Segmentasi Tepi Citra CT Scan Paru-paru Menggunakan Metode Chain Code dan Operasi Morfologi

Authors

  • Masfran Masfran Politeknik Caltex Riau
  • Ananda Ananda Politeknik Caltex Riau
  • Erwin Setyo Nugroho Politeknik Caltex Riau

Abstract

Image segmentation is an important topic in digital image processing and can be found in various field of images research. One of them is medical image segmentation in the medical field. Edge of image segmentation of lung CT scan is an alternative step in medical lung images processing, which the result can be continued to be used to detect the presence of nodules that are useful as an auxiliary parameter in detecting lung disease like cancer. In this study, edge of image segmentation of lung CT scan is using chain code and mathematical morphology operations. The function of chain code in this study is to detect edge of lung in CT image, whereas the morphology operations are used to enhancement the shape of image. This study showed that the use of chain code and morphological operations can provide a smooth edge of lung CT scan image segmentation. The smooth detail on the edge of the lung CT scan can provide important information such as the boundary of an areas or object within the image. Mathematical morphology operations haven’t been success applied to all images, the percentage of success is 76.6% and percentage of success to eliminate noise in lung CT images is equal to 86.7%.Kata kunci:Segmentasi citra; CT-Scan paru-paru; Chain Code; Matematika Morfologi

Author Biographies

Masfran Masfran, Politeknik Caltex Riau

Teknik Informatika

Ananda Ananda, Politeknik Caltex Riau

Teknik Informatika

Erwin Setyo Nugroho, Politeknik Caltex Riau

Teknik Informatika

References

World Health Organization. (Oktober 2011). Cancer. Diambil 8 Desember 2011 dari http://www.who.int/mediacentre/factsheets/fs297/en/index.html

Armato, Samuel G., Giger, Maryellen L., Moran, Catherine J., Blackburn, James T., Doi, Kunio., Macmahon, Heber. (1999). Imaging & Therapeutic Technology. Computerized Detection of Pulmonary Nodules on CT Scans. hal.1303-1311.

Hu, Shiying., Hoffman, Eric A. and Reinhardt, Joseph M. (2001). IEEE Transactions on Medical Imaging. Automatic Lung Segmentation for Accurate Quantitation of Volumetric X-Ray CT Images. 20(6), hal.490-498.

Iqbal, Saleem,. Iqbal, Khalid. (2011). International Journal of Academic Research. Lungs Segmentation for ComputerAided Diagnosis. 3(5), hal.161-166.

Ananda. (2012). Segmentasi Nodul pada Citra Computed Tomography Paru-Paru Menggunakan Max-Tree dan Atribute Filters. Institut Teknologi Sepuluh September.

Bertalya, Prihandoko, Kusuma, Tb. Maulana. (2008). Seminar Ilmiah Ilmu Komputer Nasional. Klasifikasi Citra X-Ray Menggunakan Kode Freeman.

Putra, Darma. (2010). Pengolahan Citra Digital. Yogyakarta: Penerbit ANDI.

Shabab, Walid., Al-Otum, Hazem and Al-Ghoul, Farouq. (2009). The International Arab Journal of Information Technology. A Modified Chain Code Algorithm for Object Segmentation and Contour Tracing. 6(3), hal.250-257.

Gonzalez, Rafael C. dan Woods, Richard E. (2002). Digital Image Processing ( 2nd ed ). New Jersey: Prentice Hall.

Dougherty, Geoff. (2009). Digital Image Processing for Medical Applications. Unites States of America: Cambridge University Press.

Lung Images Database Consortium, National Cancer Institute, http://imaging.nci.nih.gov/.

Published

2012-05-19

Issue

Section

Artikel