
Jurnal Komputer Terapan Vol. 8, No. 1, Mei 2022, 103 – 112 103

Dokumen diterima pada 24 April, 2022

Dipublikasikan pada 31 Mei, 2022

 Jurnal Politeknik Caltex Riau

 Terbit Online pada laman https://jurnal.pcr.ac.id/index.php/jkt/

 | e- ISSN : 2460-5255 (Online) | p- ISSN : 2443-4159 (Print) |

Implementation of Parallel Programming in

One-Dimensional Electromagnetic Simulation with

the FDTD Method

Edmond Febrinicko Armay*†1, Heni Rachmawati2

1*UIN Sultan Syarif Kasim Riau, email: nicko@uin-suska.ac.id

†Lund University
2Polytechnic of Caltex Riau, email: henni@pcr.ac.id

Abstract

Simulation of electromagnetic in 1D has been done using FDTD method. The simulation is

conducted on some scenario, starting from one-dimensional free space, absorbing boundary

condition in one dimension, propagation in a dielectric medium, simulating different sources, and

propagation in a lossy dielectric medium. To accelerate calculation process, parallel

programming technique is used on looping parts of simulation. We get significant increase for

speedup between 10 – 50 times.

Keywords: parallel; 1D; electromagnetic; FDTD; speedup

1. Introduction

Computational electromagnetics (CEM) is the process of modeling in the interaction of electromagnetic

fields with physical objects and the environment. It typically involves using computationally efficient

approximations to Maxwell’s equation and is used to calculate antenna performance, electromagnetic

compatibility, radar cross section, and, in this paper, electromagnetic wave propagation [1]. In modern

electromagnetic solution, one approach is to discretize the space in terms of grids (both orthogonal and non-

orthogonal) and solving Maxwell’s equations at each point in the grid, as shown in Fig. 1.

Figure 1. Modern electromagnetic solution [2]

https://jurnal.pcr.ac.id/index.php/jkt/

104 Edmond Febrinicko Armay, Heni Rachmawati

Discretization consumes computer memory, and solving the equations takes significant time. Large scale

CEM problems face memory and CPU limitations. As of 2007, CEM problems require supercomputers,

high performance clusters, vector processors and/or parallel computer [2]. Choosing the right technique for

solving a problem in CEM is important, as choosing the wrong one can either result in incorrect results, or

results which take excessively long to compute. The comparison of three popular methods as shown in

Table I.

Table 1. Comparison of cem methods [2]

Method of Moments Finite Element Method Finite Difference Time

Domain

Discretization Only wires or surfaces Entire domain (tetrahedron) Entire domain (cube)

Solution

method
Frequency domain, linear equations,

full matrix
Frequency domain, linear

equations, sparse matrix
Time domain, iterations

Boundary

conditions
No need for special boundary

conditions
Absorbing boundary conditions Absorbing boundary

conditions

Numerical

effort
~N3 ~N2 ~N

Well suited for: Wire antennas, metal surfaces,

coupling between distant elements,
arbitrary shapes of surfaces, single or

few frequencies

Arbitrary shapes and materials,

single or few frequencies
Preferably orthogonal planar

boundaries, arbitrary materials,

broadband investigations

Not so well

suited for:
Various materials, electrically very

large structures, broadband

investigations

Electrically large structures,

coupling between distant
elements, broadband

investigations

Coupling between distant

elements, high-Q structures

Finite difference time domain (FDTD) is a popular CEM technique. It is easy to understand. It has an

exceptionally simple implementation for a full wave solver. It is at least an order of magnitude less work

to implement a basic FDTD solver than either Finite Element Method (FEM) or Method of Moments

(MoM) solver. FDTD is the only technique where one person can realistically implement oneself in a

reasonable time frame, but even then, this will be for a quite specific problem [2].

2. Research Methodology

A. Deriving Formulations for One-Dimensional Electromagnetic Simulation

In one-dimensional free space, the equations of a plane wave with the electric field oriented in the x direction,
and the magnetic field oriented in the y direction are [3]

 �̃�𝑥
𝑛+

1

2(𝑘) = �̃�𝑥
𝑛−

1

2(𝑘) −
1

√𝜀0𝜇0

Δ𝑡

Δ𝑥
[𝐻𝑦

𝑛 (𝑘 +
1

2
) − 𝐻𝑦

𝑛 (𝑘 −
1

2
)] ()

 𝐻𝑦
𝑛+1 (𝑘 +

1

2
) = 𝐻𝑦

𝑛 (𝑘 +
1

2
) −

1

√𝜀0𝜇0

Δ𝑡

Δ𝑥
[�̃�𝑥

𝑛+
1

2(𝑘 + 1) − �̃�𝑥
𝑛+

1

2(𝑘)] ()

Where,

1

√𝜀0𝜇0

Δ𝑡

Δ𝑥
=

1

2
 ()

In the first two equations, time is specified by the superscripts, i.e., “n” actually means a time t=Δt.n. The
terms in parentheses represent distance, i.e., “k” actually means the distance z=Δx.k. Rewriting (1) and (2)
in C computer code gives the following:

 ex[k]=ex[k]+0.5*(hy[k-1]-hy[k]) ()

 hy[k]=hy[k]+0.5*(ex[k]-ex[k+1]) ()

Implementation of Parallel Programming in One-Dimensional Electromagnetic

Simulation with the FDTD Method 105

note that the n or n+1/2 or n-1/2 in the superscripts is gone. Time is implicit in the FDTD method. Position,
however, is explicit.

If absorbing boundary condition is added, the fields at the edge must be propagating outward. Therefore, an
acceptable boundary condition might be [3]

 𝐸𝑥
𝑛(0) = 𝐸𝑥

𝑛−2(1) ()

If relative dielectric constant εr is added, a portion of the electric field propagates into the medium and a
portion is reflected, in keeping with basic electromagnetic theory. Therefore, (1) becomes [3]

 �̃�𝑥
𝑛+

1

2(𝑘) = �̃�𝑥
𝑛−

1

2(𝑘) −
1/2

𝜀𝑟
[𝐻𝑦

𝑛 (𝑘 +
1

2
) − 𝐻𝑦

𝑛 (𝑘 −
1

2
)] ()

From this, the computer code becomes

 Ex[k]=ex[k]+cb[k]*(hy[k-1]-hy[k]) ()

Where

 cb[k]=0.5/epsilon ()

over those values of k that specify the dielectric material.

If a Gaussian pulse as the source switches to a sinusoidal source, the parameter pulse=exp(-0.5*(pow((t0-
T)/spread, 2.0))) becomes

 Pulse=sin(2*pi*freq_in*dt*T)()

The parameter freq_in determines the frequency of the wave. The time step dt is specified by [3]

 Δ𝑡 =
Δ𝑥

2𝑐0
 ()

Where c0 is the speed of light in free space, and the cell size Δx is determined by [3]

 Δ𝑥 =
𝜆𝑚

10
 ()

 𝜆𝑚 =
𝑐0/√𝜀𝑟

𝑓
 ()

Where f is the frequency of the wave in MHz.

If EM propagates in a media that also have a loss term specified by the conductivity, this loss term results in
the attenuation of the propagating energy. Therefore, (7) becomes [3]

 �̃�𝑥
𝑛+

1

2(𝑘) =
(1−

Δ𝑡.𝜎

2𝜀𝑟𝜀0
)

(1+
Δ𝑡.𝜎

2𝜀𝑟𝜀0
)
�̃�𝑥
𝑛−

1

2(𝑘) −
1/2

𝜀𝑟(1+
Δ𝑡.𝜎

2𝜀𝑟𝜀0
)
[𝐻𝑦

𝑛 (𝑘 +
1

2
) − 𝐻𝑦

𝑛 (𝑘 −
1

2
)] ()

From this, the computer code becomes

 Ex[k]=ca[k]*ex[k]+cb[k]*(hy[k-1]-hy[k]) ()

Where

 ca[k]=(1-eaf)/(1+eaf) ()

106 Edmond Febrinicko Armay, Heni Rachmawati

 cb[k]=0.5/(epsilon*(1+eaf)) ()

 eaf=dt*sigma/(2*epsilon*epsz)()

From equations (4), (5), (8), and (15), it can be seen that distance variable k will be used repeatedly

in simulation of electric field Ex(k) and magnetic field Hy(k). The variable is called loop index. In

computing, if we used sequential computing to access loop index, then solving the equations will

be time consuming. To reduce the processing time, we introduce another approach to access loop

index using parallel computing. Parallel computing is a form of computation in which many

calculations are carried out simultaneously, operating on the principle that large problems can

often be divided into smaller ones, which are then solved concurrently (“in parallel”) [4]. Parallel

programming for simulation in parallel computer is more difficult to write than sequential ones,

because concurrency introduces several new classes of potential software bugs, of which race

conditions are the most common [5]. However, throwing more resources at a task will shorten its

time to completion. Main memory in a parallel computer is either shared memory, or distributed

memory [6].

1. Implementing OpenMP on 1D FDTD

Open Multi-Processing (OpenMP) is an application programming interface (API) that supports multi-
platform shared memory multiprocessing programming in C, C++, and Fortran, on most processor
architectures and operating systems [7]. It consists of a set of compiler directives, library routines, and
environment variables that influence run-time behavior [8]. A method of parallelizing one-dimensional
electromagnetic is a master thread forks a specified number of slave threads and a task is divided among
them, as shown in Fig. 2.

Figure 2. An illustration of multithreading

Parallel Task I is assigned to calculate the initialization of electric and magnetic fields, respectively. The
parallel code for the initialization as it follows:

#pragma omp parallel for

 for (k=0; k<KE; k++)

 {

 ex[k]=0.;

 hy[k]=0.;

 }

Parallel Task II is assigned to calculate the magnitude of electric and magnetic fields at a given distance
k. For 1D FDTD simulation in free space, the parallel code as it follows:

#pragma omp parallel for

 for (k=1; k<KE; k++)

Implementation of Parallel Programming in One-Dimensional Electromagnetic

Simulation with the FDTD Method 107

 {

 ex[k]=ex[k]+.5*(hy[k-1]-hy[k]);

 }

#pragma omp parallel for

 for (k=0; k<KE-1; k++)

 {

 hy[k]=hy[k]+.5*(ex[k]-ex[k+1]);

 }

The code above is also used if absorbing boundary condition is added. If we simulate a pulse and/or a
sinusoidal wave hitting a dielectric medium, the parallel code above becomes:

#pragma omp parallel for

 for (k = 1; k < KE; k++)

 {

 ex[k] = ex[k] + cb[k] * (hy[k - 1] - hy[k]);

 }

#pragma omp parallel for

 for (k = 0; k < KE - 1; k++)

 {

 hy[k] = hy[k] + .5*(ex[k] - ex[k + 1]);

 }

where cb[k] is defined by equation (9). If we simulate a sinusoidal wave hitting a lossy dielectric medium,
the parallel code above becomes:

#pragma omp parallel for

for (k = 1; k < KE; k++)

{

 ex[k] = ca[k] * ex[k] + cb[k] * (hy[k - 1] - hy[k]);

}

#pragma omp parallel for

 for (k = 0; k < KE - 1; k++)

 {

 hy[k] = hy[k] + .5*(ex[k] - ex[k + 1]);

 }

where ca[k] is defined by equation (16).

Parallel Task III is assigned to write the result of the magnitudes into a file called Ex.xls and Hy.xls.

#pragma omp for

 for (k=1; k<=KE; k++)

 {

 fprintf(fp, "%3d\t %f\n", k, ex[k]);

 }

#pragma omp for

 for (k=1; k<=KE; k++)

 {

 fprintf(fp, "%3d\t %f\n", k, hy[k]);

 }
To measure for how much relative performance improvement when executing a task, both in sequential

and parallel programming, we used an equation as it follows [6]:

 𝑆 =
𝑇𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙

𝑇𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙
 ()

108 Edmond Febrinicko Armay, Heni Rachmawati

where S is the resultant speedup, Tsequential is the sequential execution time, and Tparallel is the parallel execution

time. Each program was run ten times. The timing was recorded using the C time header. The programs were

run on Visual Studio Code under Windows Subsystem for Linux in Windows 11, with 2.40 GHz Intel Core

i5 (8 cores) processor and 6 GB of RAM. The raw results were recorded by the script in files called

Sequential.doc and Parallel.doc. These raw results were tabulated, averaged, and graphed.

2. Result

In this section, we discuss briefly all of simulation results which are categorized into simulation in one-
dimensional free space, absorbing boundary condition in one dimension, propagation in a dielectric medium,
simulating different sources, and propagation in a lossy dielectric medium.

A. One-Dimensional Free Space

The C computer code in equation (4)-(5) is a one-dimensional FDTD program. It generates a Gaussian pulse
in the center of the problem space, and the pulse propagates away in both directions as seen in Fig. 3.

Figure 3. FDTD simulation of a pulse in free space after 100 timesteps. The pulse originated in the

center and travels outward.

The 𝐸𝑥 field is positive in both directions, but the 𝐻𝑦 field is negative direction. This is because the 𝐸𝑥 and

𝐻𝑦 values are calculated by separate loops, and they employ the interleaving. After the 𝐸𝑥 values are

calculated, the source is calculated. This is done by specifying a value of 𝐸𝑥 at the point k=kc, and overriding
what was previously calculated. This is referred to as a “hard source,” because a specific value is imposed
on the FDTD grid.

B. The Absorbing Boundary Condition in One Dimension

To implement equation (6), we store a value of 𝐸𝑥(1) for two timesteps, and we put it in 𝐸𝑥(0). Boundary
conditions such as these are implemented at both ends of the 𝐸𝑥 array in C computer code. Fig. 4 and Fig. 5
show the results of a simulation using the code. A pulse that originates in the center propagates outward and
is absorbed without reflecting anything back into the problem space.

Implementation of Parallel Programming in One-Dimensional Electromagnetic

Simulation with the FDTD Method 109

Figure 4. FDTD simulation of an electric field in free space after 100, 225, and 250 timesteps.,

respectively, with absorbing boundary conditions. The field is absorbed at the edges without reflecting

anything back.

Figure 5. FDTD simulation of a magnetic field in free space after 100, 225, and 250 timesteps.,

respectively, with absorbing boundary conditions. Like electric part, the field is also absorbed at the

edges without reflecting anything back.

C. Propagation in a Dielectric Medium

The C computer code in equation (8) is simulating the interaction of a pulse traveling in free space until it
strikes a dielectric medium. The medium is specified by the parameter cb in equation (9). Fig. 6 and Fig. 7
show the result of a simulation with a dielectric medium having a relative dielectric constant of 4. We can
see from the figures that a portion of the pulse propagates into the medium and a portion is reflected

110 Edmond Febrinicko Armay, Heni Rachmawati

Figure 6. FDTD simulation of an electric field in free space after 100, 220, 320, and 440 timesteps., respectively,

striking a dielectric material with a dielectric constant of 4.

Figure 7. FDTD simulation of a magnetic field in free space after 100, 220, 320, and 440 timesteps., respectively,

striking a dielectric material with a dielectric constant of 4.

Implementation of Parallel Programming in One-Dimensional Electromagnetic

Simulation with the FDTD Method 111

D. Simulating Different Sources

The C computer code in equation (10) is a sinusoidal source which is striking the same dielectric medium
problem. Fig. 8 and Fig. 9 show a sine wave with a frequency of 700 MHz is striking a dielectric material
with a dielectric constant of 4. From the figures, we can see the simulation is stopped before the wave reached
the far right side. It is because there is an absorbing boundary condition in free space. In the code, we specify
the cell size and the time step explicitly (equation (11)-(12)). The cell size Δx is specified first because it is
needed to calculate the time step Δt, and Δt is used in the calculation of pulse.

Figure 8. FDTD simulation of a 700 MHz sinusoidal electric field in free space after 150, and 425

timesteps., respectively, striking a dielectric material with a dielectric constant of 4.

Figure 9. FDTD simulation of a 700 MHz sinusoidal magnetic field in free space after 150, and 425

timesteps., respectively, striking a dielectric material with a dielectric constant of 4.

E. Propagation in a Lossy Dielectric Medium

The C computer code in equation (15) is simulating a sine wave hitting a lossy medium that has a dielectric
constant of 4 and a conductivity of 0.04. The pulse is generated at the far left side and propagates to the right.
This is illustrated in Fig. 10. The waveform in the medium is absorbed before it hits the boundary, so we
don’t have to worry about absorbing boundary conditions.

112 Edmond Febrinicko Armay, Heni Rachmawati

Figure 10. FDTD simulation of a propagating sine wave striking a lossy dielectric material with a dielectric

constant of 4 and a conductivity of 0.04 S/m after 500 timesteps. The source is 700 MHz.

4. Conclusion

From simulations we get some graphs for different scenario on one-dimensional electromagnetic wave. The

highest increase for speedup is obtained from one-dimensional free space around 50 times, while the lowest

speedup is from propagation in a lossy dielectric medium around 10 times. We can conclude that more

loops make speedup lower, so optimizing the simulation codes is necessary to decrease latency and to

increase throughput.

Reference

[1] W. C. Chew, J. M. Jin, E. Michielssen, and J. Song, Fast and Efficient Algorithms in
Computational Electromagnetics. Boston: Artech House, Inc., 2001.
[2] D. B. Davidson, Computational Electromagnetics for RF and Microwave Engineering. 2nd
ed., New York: Cambridge University Press, 2011.
[3] D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method. 2nd ed., New York:
Wiley-IEEE Press, 2013.
[4] G. S. Almasi, and A. Gottlieb, Highly Parallel Computing. 2nd ed., Benjamin/Cummings
Publishing, 1994.
[5] D. A. Patterson, and J. L. Hennessy, Computer Organization and Design: The
Hardware/Software Interface. 5th ed., Morgan Kaufmann, 2014.
[6] J. L. Hennessy, and D. A. Patterson, Computer Architecture: A Quantitative Approach. 5th
ed., Morgan Kaufmann, 2011.
[7] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating System Concepts. 9th ed., USA: John
Wiley & Sons, Inc., 2013.
[8] B. Chapman, G. Jost, R. V. D. Pas, Using OpenMP: Portable Shared Memory Parallel
Programming. USA: The MIT Press, 2008.

