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Abstract 

Simulation of electromagnetic in 1D has been done using FDTD method. The simulation is 

conducted on some scenario, starting from one-dimensional free space, absorbing boundary 

condition in one dimension, propagation in a dielectric medium, simulating different sources, and 

propagation in a lossy dielectric medium. To accelerate calculation process, parallel 

programming technique is used on looping parts of simulation. We get significant increase for 

speedup between 10 – 50 times. 
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1. Introduction 

Computational electromagnetics (CEM) is the process of modeling in the interaction of electromagnetic 

fields with physical objects and the environment. It typically involves using computationally efficient 

approximations to Maxwell’s equation and is used to calculate antenna performance, electromagnetic 

compatibility, radar cross section, and, in this paper, electromagnetic wave propagation [1]. In modern 

electromagnetic solution, one approach is to discretize the space in terms of grids (both orthogonal and non-

orthogonal) and solving Maxwell’s equations at each point in the grid, as shown in Fig. 1. 

 

Figure 1. Modern electromagnetic solution [2] 
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Discretization consumes computer memory, and solving the equations takes significant time. Large scale 

CEM problems face memory and CPU limitations. As of 2007, CEM problems require supercomputers, 

high performance clusters, vector processors and/or parallel computer [2]. Choosing the right technique for 

solving a problem in CEM is important, as choosing the wrong one can either result in incorrect results, or 

results which take excessively long to compute. The comparison of three popular methods as shown in 

Table I. 

Table 1. Comparison of cem methods [2] 
  

Method of Moments Finite Element Method Finite Difference Time 

Domain 

Discretization Only wires or surfaces Entire domain (tetrahedron) Entire domain (cube) 

Solution 

method 
Frequency domain, linear equations, 

full matrix 
Frequency domain, linear 

equations, sparse matrix 
Time domain, iterations 

Boundary 

conditions 
No need for special boundary 

conditions 
Absorbing boundary conditions Absorbing boundary 

conditions 

Numerical 

effort 
~N3 ~N2 ~N 

Well suited for: Wire antennas, metal surfaces, 

coupling between distant elements, 
arbitrary shapes of surfaces, single or 

few frequencies 

Arbitrary shapes and materials, 

single or few frequencies 
Preferably orthogonal planar 

boundaries, arbitrary materials, 

broadband investigations 

Not so well 

suited for: 
Various materials, electrically very 

large structures, broadband 

investigations 

Electrically large structures, 

coupling between distant 
elements, broadband 

investigations 

Coupling between distant 

elements, high-Q structures 

 

Finite difference time domain (FDTD) is a popular CEM technique. It is easy to understand. It has an 

exceptionally simple implementation for a full wave solver. It is at least an order of magnitude less work 

to implement a basic FDTD solver than either Finite Element Method (FEM) or Method of Moments 

(MoM) solver. FDTD is the only technique where one person can realistically implement oneself in a 

reasonable time frame, but even then, this will be for a quite specific problem [2]. 

2. Research Methodology 

A. Deriving Formulations for One-Dimensional Electromagnetic Simulation 

In one-dimensional free space, the equations of a plane wave with the electric field oriented in the x direction, 
and the magnetic field oriented in the y direction are [3] 
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In the first two equations, time is specified by the superscripts, i.e., “n” actually means a time t=Δt.n. The 
terms in parentheses represent distance, i.e., “k” actually means the distance z=Δx.k. Rewriting (1) and (2) 
in C computer code gives the following: 

 ex[k]=ex[k]+0.5*(hy[k-1]-hy[k]) () 

 hy[k]=hy[k]+0.5*(ex[k]-ex[k+1]) () 
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note that the n or n+1/2 or n-1/2 in the superscripts is gone. Time is implicit in the FDTD method. Position, 
however, is explicit. 

If absorbing boundary condition is added, the fields at the edge must be propagating outward. Therefore, an 
acceptable boundary condition might be [3] 

 𝐸𝑥
𝑛(0) = 𝐸𝑥

𝑛−2(1) () 

If relative dielectric constant εr is added, a portion of the electric field propagates into the medium and a 
portion is reflected, in keeping with basic electromagnetic theory. Therefore, (1) becomes [3] 
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From this, the computer code becomes 

 Ex[k]=ex[k]+cb[k]*(hy[k-1]-hy[k]) () 

Where 

 cb[k]=0.5/epsilon () 

over those values of k that specify the dielectric material. 

If a Gaussian pulse as the source switches to a sinusoidal source, the parameter pulse=exp(-0.5*(pow((t0-
T)/spread, 2.0))) becomes 

 Pulse=sin(2*pi*freq_in*dt*T)() 

The parameter freq_in determines the frequency of the wave. The time step dt is specified by [3] 
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Δ𝑥

2𝑐0
 () 

Where c0 is the speed of light in free space, and the cell size Δx is determined by [3] 
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Where f is the frequency of the wave in MHz. 

If EM propagates in a media that also have a loss term specified by the conductivity, this loss term results in 
the attenuation of the propagating energy. Therefore, (7) becomes [3] 
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From this, the computer code becomes 

 Ex[k]=ca[k]*ex[k]+cb[k]*(hy[k-1]-hy[k]) () 

Where 

 ca[k]=(1-eaf)/(1+eaf) () 
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 cb[k]=0.5/(epsilon*(1+eaf)) () 

 eaf=dt*sigma/(2*epsilon*epsz)() 

From equations (4), (5), (8), and (15), it can be seen that distance variable k will be used repeatedly 

in simulation of electric field Ex(k) and magnetic field Hy(k). The variable is called loop index. In 

computing, if we used sequential computing to access loop index, then solving the equations will 

be time consuming. To reduce the processing time, we introduce another approach to access loop 

index using parallel computing. Parallel computing is a form of computation in which many 

calculations are carried out simultaneously, operating on the principle that large problems can 

often be divided into smaller ones, which are then solved concurrently (“in parallel”) [4]. Parallel 

programming for simulation in parallel computer is more difficult to write than sequential ones, 

because concurrency introduces several new classes of potential software bugs, of which race 

conditions are the most common [5]. However, throwing more resources at a task will shorten its 

time to completion. Main memory in a parallel computer is either shared memory, or distributed 

memory [6]. 

1. Implementing OpenMP on 1D FDTD 

Open Multi-Processing (OpenMP) is an application programming interface (API) that supports multi-
platform shared memory multiprocessing programming in C, C++, and Fortran, on most processor 
architectures and operating systems [7]. It consists of a set of compiler directives, library routines, and 
environment variables that influence run-time behavior [8]. A method of parallelizing one-dimensional 
electromagnetic is a master thread forks a specified number of slave threads and a task is divided among 
them, as shown in Fig. 2. 

 

Figure 2. An illustration of multithreading 

Parallel Task I is assigned to calculate the initialization of electric and magnetic fields, respectively. The 
parallel code for the initialization as it follows: 

#pragma omp parallel for 

 for (k=0; k<KE; k++) 

 { 

  ex[k]=0.; 

  hy[k]=0.; 

 } 

 

Parallel Task II is assigned to calculate the magnitude of electric and magnetic fields at a given distance 
k. For 1D FDTD simulation in free space, the parallel code as it follows: 

 

 

 

 

#pragma omp parallel for 

 for (k=1; k<KE; k++) 
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  { 

  ex[k]=ex[k]+.5*(hy[k-1]-hy[k]); 

  } 

#pragma omp parallel for 

 for (k=0; k<KE-1; k++) 

  { 

  hy[k]=hy[k]+.5*(ex[k]-ex[k+1]); 

  } 

 

The code above is also used if absorbing boundary condition is added. If we simulate a pulse and/or a 
sinusoidal wave hitting a dielectric medium, the parallel code above becomes: 

#pragma omp parallel for 

 for (k = 1; k < KE; k++) 

 { 

  ex[k] = ex[k] + cb[k] * (hy[k - 1] - hy[k]); 

 } 

#pragma omp parallel for 

 for (k = 0; k < KE - 1; k++) 

 { 

  hy[k] = hy[k] + .5*(ex[k] - ex[k + 1]); 

 } 

where cb[k] is defined by equation (9). If we simulate a sinusoidal wave hitting a lossy dielectric medium, 
the parallel code above becomes: 

#pragma omp parallel for 

for (k = 1; k < KE; k++) 

{ 

 ex[k] = ca[k] * ex[k] + cb[k] * (hy[k - 1] - hy[k]); 

} 

#pragma omp parallel for 

 for (k = 0; k < KE - 1; k++) 

 { 

  hy[k] = hy[k] + .5*(ex[k] - ex[k + 1]); 

 } 

where ca[k] is defined by equation (16). 

 

Parallel Task III is assigned to write the result of the magnitudes into a file called Ex.xls and Hy.xls. 

#pragma omp for 

 for (k=1; k<=KE; k++) 

 { 

  fprintf(fp, "%3d\t %f\n", k, ex[k]); 

 } 

#pragma omp for 

 for (k=1; k<=KE; k++) 

 { 

  fprintf(fp, "%3d\t %f\n", k, hy[k]); 

 } 
To measure for how much relative performance improvement when executing a task, both in sequential 

and parallel programming, we used an equation as it follows [6]: 

 𝑆 =
𝑇𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙

𝑇𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙
 () 
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where S is the resultant speedup, Tsequential is the sequential execution time, and Tparallel is the parallel execution 

time. Each program was run ten times. The timing was recorded using the C time header. The programs were 

run on Visual Studio Code under Windows Subsystem for Linux in Windows 11, with 2.40 GHz Intel Core 

i5 (8 cores) processor and 6 GB of RAM. The raw results were recorded by the script in files called 

Sequential.doc and Parallel.doc. These raw results were tabulated, averaged, and graphed. 

 

2. Result 

In this section, we discuss briefly all of simulation results which are categorized into simulation in one-
dimensional free space, absorbing boundary condition in one dimension, propagation in a dielectric medium, 
simulating different sources, and propagation in a lossy dielectric medium. 

A. One-Dimensional Free Space 

The C computer code in equation (4)-(5) is a one-dimensional FDTD program. It generates a Gaussian pulse 
in the center of the problem space, and the pulse propagates away in both directions as seen in Fig. 3. 

 

Figure 3.  FDTD simulation of a pulse in free space after 100 timesteps. The pulse originated in the 

center and travels outward. 

The 𝐸𝑥 field is positive in both directions, but the 𝐻𝑦  field is negative direction. This is because the 𝐸𝑥 and 

𝐻𝑦  values are calculated by separate loops, and they employ the interleaving. After the 𝐸𝑥 values are 

calculated, the source is calculated. This is done by specifying a value of 𝐸𝑥 at the point k=kc, and overriding 
what was previously calculated. This is referred to as a “hard source,” because a specific value is imposed 
on the FDTD grid. 

 

B. The Absorbing Boundary Condition in One Dimension 

To implement equation (6), we store a value of 𝐸𝑥(1) for two timesteps, and we put it in 𝐸𝑥(0). Boundary 
conditions such as these are implemented at both ends of the 𝐸𝑥 array in C computer code. Fig. 4 and Fig. 5 
show the results of a simulation using the code. A pulse that originates in the center propagates outward and 
is absorbed without reflecting anything back into the problem space. 
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Figure 4.  FDTD simulation of an electric field in free space after 100, 225, and 250 timesteps., 

respectively, with absorbing boundary conditions. The field is absorbed at the edges without reflecting 

anything back. 

 

Figure 5.  FDTD simulation of a magnetic field in free space after 100, 225, and 250 timesteps., 

respectively, with absorbing boundary conditions. Like electric part, the field is also absorbed at the 

edges without reflecting anything back. 

C. Propagation in a Dielectric Medium 

The C computer code in equation (8) is simulating the interaction of a pulse traveling in free space until it 
strikes a dielectric medium. The medium is specified by the parameter cb in equation (9). Fig. 6 and Fig. 7 
show the result of a simulation with a dielectric medium having a relative dielectric constant of 4. We can 
see from the figures that a portion of the pulse propagates into the medium and a portion is reflected 
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Figure 6.  FDTD simulation of an electric field in free space after 100, 220, 320, and 440 timesteps., respectively, 

striking a dielectric material with a dielectric constant of 4. 

 

 

 

Figure 7.  FDTD simulation of a magnetic field in free space after 100, 220, 320, and 440 timesteps., respectively, 

striking a dielectric material with a dielectric constant of 4. 
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D. Simulating Different Sources 

The C computer code in equation (10) is a sinusoidal source which is striking the same dielectric medium 
problem. Fig. 8 and Fig. 9 show a sine wave with a frequency of 700 MHz is striking a dielectric material 
with a dielectric constant of 4. From the figures, we can see the simulation is stopped before the wave reached 
the far right side. It is because there is an absorbing boundary condition in free space. In the code, we specify 
the cell size and the time step explicitly (equation (11)-(12)). The cell size Δx is specified first because it is 
needed to calculate the time step Δt, and Δt is used in the calculation of pulse. 

 

Figure 8.  FDTD simulation of a 700 MHz sinusoidal electric field in free space after 150, and 425 

timesteps., respectively, striking a dielectric material with a dielectric constant of 4. 

 

 

Figure 9.  FDTD simulation of a 700 MHz sinusoidal magnetic field in free space after 150, and 425 

timesteps., respectively, striking a dielectric material with a dielectric constant of 4. 

E. Propagation in a Lossy Dielectric Medium 

The C computer code in equation (15) is simulating a sine wave hitting a lossy medium that has a dielectric 
constant of 4 and a conductivity of 0.04. The pulse is generated at the far left side and propagates to the right. 
This is illustrated in Fig. 10. The waveform in the medium is absorbed before it hits the boundary, so we 
don’t have to worry about absorbing boundary conditions. 
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Figure 10.  FDTD simulation of a propagating sine wave striking a lossy dielectric material with a dielectric 

constant of 4 and a conductivity of 0.04 S/m after 500 timesteps. The source is 700 MHz. 

4. Conclusion 

From simulations we get some graphs for different scenario on one-dimensional electromagnetic wave. The 

highest increase for speedup is obtained from one-dimensional free space around 50 times, while the lowest 

speedup is from propagation in a lossy dielectric medium around 10 times. We can conclude that more 

loops make speedup lower, so optimizing the simulation codes is necessary to decrease latency and to 

increase throughput. 
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