Main Article Content
Abstract
Keywords
Article Details
Copyright (c) 2022 Jurnal Komputer TerapanÂ
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright info for authors
1. Authors hold the copyright in any process, procedure, or article described in the work and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors retain publishing rights to re-use all or portion of the work in different work but can not granting third-party requests for reprinting and republishing the work.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) as it can lead to productive exchanges, as well as earlier and greater citation of published work.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License
References
- S. Ilahiyah and A. Nilogiri, “Implementasi Deep Learning Pada Identifikasi Jenis Tumbuhan Berdasarkan Citra Daun Menggunakan Convolutional Neural Network,†JUSTINDO (Jurnal Sist. dan Teknol. Inf. Indones., vol. 3, no. 2, pp. 49–56, 2018.
- S. F. Alamsyah, “Implementasi Deep Learning Untuk Klasifikasi Tanaman Toga Berdasarkan Ciri Daun Berbasis Android,†Ubiquitous Comput. its Appl. J., vol. 2, pp. 113–122, 2019, doi: 10.51804/ucaiaj.v2i2.113-122.
- Al Rivan, M. E., & Riyadi, A. G. (2021). Perbandingan Arsitektur LeNet dan AlexNet Pada Metode Convolutional Neural Network Untuk Pengenalan American Sign Language. Jurnal Komputer Terapan , 7(1), 53–61. https://doi.org/10.35143/jkt.v7i1.4489
- E. Rasywir, R. Sinaga, and Y. Pratama, “Analisis dan Implementasi Diagnosis Penyakit Sawit dengan Metode Convolutional Neural Network (CNN),†J. Paradig. UBSI, vol. 22, no. 2, pp. 117–123, 2020.
- A. Asrianda, H. A. K. Aidilof, and Y. Pangestu, “Machine Learning for Detection of Palm Oil Leaf Disease Visually using Convolutional Neural Network Algorithm,†J. Informatics Telecommun. Eng., vol. 4, no. 2, pp. 286–293, 2021, doi: 10.31289/jite.v4i2.4185.
- Widians, J.A., Rizkyani, F.A.â€Identifikasi Hama Kelapa Sawit menggunakan Metode Certainty Factor “ ILKOM Jurnal Ilmiah; Vol 12, No 1 (2020) doi: 10.33096/ilkom.v12i1.526.58-63:
- Kusumaningrum, T.F., “Implementasi Convolution Neural Network (CNN) Untuk Klasifikasi Jamur Konsumsi Di Indonesia Menggunakan Keras,†vol. 151, no. 2, pp. 10–17, 2018 .
- V. Maeda-Gutiérrez et al., “Comparison of convolutional neural network architectures for classification of tomato plant diseases,†Appl. Sci., vol. 10, no. 4, 2020, doi: 10.3390/app10041245.
- Malika, Muna. Widodo,Edi.â€Implementasi Deep Learning Untuk Klasifikasi Gambar Menggunakan Convolutional Neural Network (Cnn) Pada Batik Sasamboâ€. Pattimura Proceeding Conference Of Science and Technology.2021.
- S. Kulkarni and S. Harnoorkar, “Comparative Analysis of CNN Architectures,†vol. 7, no. June 6, pp. 1459–1464, 2020.
References
S. Ilahiyah and A. Nilogiri, “Implementasi Deep Learning Pada Identifikasi Jenis Tumbuhan Berdasarkan Citra Daun Menggunakan Convolutional Neural Network,†JUSTINDO (Jurnal Sist. dan Teknol. Inf. Indones., vol. 3, no. 2, pp. 49–56, 2018.
S. F. Alamsyah, “Implementasi Deep Learning Untuk Klasifikasi Tanaman Toga Berdasarkan Ciri Daun Berbasis Android,†Ubiquitous Comput. its Appl. J., vol. 2, pp. 113–122, 2019, doi: 10.51804/ucaiaj.v2i2.113-122.
Al Rivan, M. E., & Riyadi, A. G. (2021). Perbandingan Arsitektur LeNet dan AlexNet Pada Metode Convolutional Neural Network Untuk Pengenalan American Sign Language. Jurnal Komputer Terapan , 7(1), 53–61. https://doi.org/10.35143/jkt.v7i1.4489
E. Rasywir, R. Sinaga, and Y. Pratama, “Analisis dan Implementasi Diagnosis Penyakit Sawit dengan Metode Convolutional Neural Network (CNN),†J. Paradig. UBSI, vol. 22, no. 2, pp. 117–123, 2020.
A. Asrianda, H. A. K. Aidilof, and Y. Pangestu, “Machine Learning for Detection of Palm Oil Leaf Disease Visually using Convolutional Neural Network Algorithm,†J. Informatics Telecommun. Eng., vol. 4, no. 2, pp. 286–293, 2021, doi: 10.31289/jite.v4i2.4185.
Widians, J.A., Rizkyani, F.A.â€Identifikasi Hama Kelapa Sawit menggunakan Metode Certainty Factor “ ILKOM Jurnal Ilmiah; Vol 12, No 1 (2020) doi: 10.33096/ilkom.v12i1.526.58-63:
Kusumaningrum, T.F., “Implementasi Convolution Neural Network (CNN) Untuk Klasifikasi Jamur Konsumsi Di Indonesia Menggunakan Keras,†vol. 151, no. 2, pp. 10–17, 2018 .
V. Maeda-Gutiérrez et al., “Comparison of convolutional neural network architectures for classification of tomato plant diseases,†Appl. Sci., vol. 10, no. 4, 2020, doi: 10.3390/app10041245.
Malika, Muna. Widodo,Edi.â€Implementasi Deep Learning Untuk Klasifikasi Gambar Menggunakan Convolutional Neural Network (Cnn) Pada Batik Sasamboâ€. Pattimura Proceeding Conference Of Science and Technology.2021.
S. Kulkarni and S. Harnoorkar, “Comparative Analysis of CNN Architectures,†vol. 7, no. June 6, pp. 1459–1464, 2020.