Main Article Content

Abstract

Technology that plays an active role in human activities is communication technology that we can find on mobile devices or computers that have internet access. PT. Telkom Akses Kantor Telkom Marina is a subsidiary of PT Telekomunikasi Indonesia Tbk (Persero) commonly called Telkom Indonesia or Telkom which is the largest information and communication company and telecommunications service and network provider in Indonesia. Located in the Riau Islands region, precisely Batam City provides job services for Installing New Channels (PSB) such as installation of internet, telephone, cable TV, and maintenance in fiber optic networks both in residential areas, buildings, shop houses and malls with distribution of Sagulung, Lubuk Baja and Batam Center. PT. Telkom Telkom Akses Kantor Telkom Marina has difficulty in meeting the minimum stock of each material based on the request for use of the distribution area. From the data on the use of existing material, it is only used for recording material usage only, while stored data is never reprocessed. Evaluation of segmentation / mapping is very important to find out whether the needs really have been met. The results of this study are expected to be able to cluster data on material usage data and the use of the K-Means method to provide results overview for material usage segmentation. The goal is for companies to be able to do and increase inventory of materials that are often ordered for each region.
Keywords: segmentation, usage, material, k-means

Article Details

How to Cite
Azwanti, N. (2018). Material Utilization Segmentation with Data Mining Clustering. Jurnal Komputer Terapan, 4(2), 16–27. Retrieved from https://jurnal.pcr.ac.id/index.php/jkt/article/view/2102

References

  1. L. Listiyoko and J. Dewanto, “Segmentasi produk menggunakan teknik data mining clustering,†Semin. Nas. Teknol. Inf., pp. 1–6, 2016.
  2. R. Handoyo, R. R. M, and S. M. Nasution, “Perbandingan Metode Clustering Menggunakan Metode Single Linkage Dan K - Means Pada Pengelompokan Dokumen,†vol. 15, no. 2, pp. 73–82, 2014.
  3. Ediyanto, M. N. Mara, and N. Satyahadewi, “Pengklasifikasian Karakteristik Dengan Metode K-Means Cluster Analysis,†Bul. Ilm. Mat. Stat. dan Ter., vol. 02, no. 2, pp. 133–136, 2013.
  4. Afrisawati, “Implementasi Data Mining Pemilihan Pelanggan Potensial Menggunakan Algoritma K-Means,†Pelita Inform. Budi Darma, vol. 5, no. 3, pp. 157–162, 2013.
  5. R. Lanjewar and O. P. Yadav, “Understanding of Customer Profiling and Segmentation Using K-Means Clustering Method for Raipur Sahkari Dugdh Sangh Milk Products,†vol. 2, no. 3, pp. 103–107, 2013.
  6. S.Ganga and D. T.Meyyappan, “Performance of Students Evaluation in Education Sector Using Clustering K-Means Algorithms,†Int. J. Comput. Sci. Mob. Comput., vol. 3, no. 7, pp. 579–584, 2014.
  7. L. Diana and G. F. Shidik, “Analisis Data Transaksi Penjualan Untuk Klasifikasi Jenis Barang Dan Relasi Daya Beli Relatif Masyarakat Menggunakan Algoritma K-Means Serta Asosiasi Apriori,†J. Teknol. Inf., vol. 10, no. 2, pp. 211–219, 2014.
  8. A. H. Lubis, “Model Segmentasi Pelanggan Dengan Kernel K-Means Clustering Berbasis Customer Relationship Management,†vol. 1, no. 1, pp. 36–41, 2016.
  9. ASRONI and R. ADRIAN, “Penerapan Metode K-Means Untuk Clustering Mahasiswa Berdasarkan Nilai Akademik Dengan Weka Interface Studi Kasus Pada Jurusan Teknik Informatika UMM Magelang,†vol. 18, no. 1, pp. 76–82, 2015.
  10. T. H. Pudjiantoro, F. Renaldi, and Age Teogunadi, “Konferensi Nasional Sistem dan Informatika 2011; Bali, November 12, 2011 KNS&I11-009 Penerapan Data Mining Untuk Menganalisa Kemungkinan Pengunduran Diri Calon Mahasiswa Baru,†Konf. Nas. Sist. dan Inform., 2011.
  11. Y. Elmande and P. P. Widodo, “Pemilihan Criteria Splitting Dalam Algoritma Iterative Dichotomiser 3 ( Id3 ) Untuk Penentuan Kualitas Beras : Studi Kasus Pada Perum Bulog Divre Lampung,†J. Telemat. MKOM, vol. 4, no. 1, 2012.
  12. J. O. Ong, “Implementasi Algoritma K-Means Clustering Untuk Menentukan Strategi Marketing,†no. 1, pp. 10–20, 2013.
  13. A. K. Wardhani, “Implementasi Algoritma K-Means Untuk Pengelompokkan Penyakit Pasien Pada Puskesmas Kajen Pekalongan,†J. Transform., vol. 14, no. 1, pp. 30–37, 2016.