Main Article Content

Abstract

The new normal life post COVID 19 pandemic can utilize the technology to support the implementation of social distancing, particularly in finding out the number of crowds or people gathering in an event or a location accurately. The process so far is done by manual counting which requires a lot of efforts. This information is demanded to suppress the number of COVID 19 cases. Therefore, the mobile application that can be used anywhere and can support high mobility is currently needed. This study tries to create a Mobile Assistant Application based on the Android Operating System, by incorporating a tracking function from the location using GPS (Global Positioning System) or a method commonly called Location Based Services (LBS) to inform the people’s presences in public places that can be accessed such as market, office, hospital, praying building, school and others. Software development method will apply the Extreme Programming method cosisting of four stages namely planning, design, coding and testing. This application can support the Government's performance in carrying out the new normal life and finding out the number of crowds, so that the social distancing can run optimally and reduce the virus spread.

Keywords

Covid 19 mobile assistant Extreme Programming kerumunan Covid 19 mobile assistant Extreme Programming Crowds

Article Details

How to Cite
Sari, N. N. K., & Widiatry, W. (2021). The Use of Mobile Assistant Application to Identify the Crowds in Covid 19 New Normal. Jurnal Komputer Terapan , 7(2), 251–260. https://doi.org/10.35143/jkt.v7i2.4710

References

  1. Kemenkes RI, “KMK Nomor Hk.01.07/Menkes/328/2020 Tentang Panduan Pencegahan Dan Pengendalian Corona Virus Disease 2019 (Covid-19) Di Tempat Kerja,” Menteri Kesehatan Republik Indonesia. pp. 1–39, 2020.
  2. L. Licantik and N. N. K. Sari, “Pengembangan Media Informasi Ruang Kuliah Pada Fakultas Teknik Universitas Palangka Raya Berbasis Android dan Location Based Service,” J. Teknol. Inf., vol. 13, no. 2, pp. 30–36, 2019.
  3. Beny, J. Budiman, and A. Nugroho, “Implementasi Geofencing Pada Aplikasi Layanan Pemantau Anak Berbasis Lokasi,” 2nd Semin. Nas. IPTEK Terap., pp. 63–66, 2017.
  4. F. Reclus and K. Drouard, “Geofencing for fleet & freight management,” in 2009 9th International Conference on Intelligent Transport Systems Telecommunications, (ITST), 2009, pp. 353–356.
  5. M. Aman and M. Asbari, “Pengembangan Aplikasi History GPS Tracker Berbasis Web Pada Handphone,” JIKEM J. Ilmu Komputer, Ekon. dan Manaj., vol. 1, no. 1, pp. 17–29, 2020.
  6. K. Agung, T. Permana, and F. T. Industri, “Implementasi Metode Location Based Services Untuk Pencarian Jemaah Haji Yang Tersesat Berbasis Android,” vol. 2, no. 2, pp. 155–160, 2018.
  7. T. Abidin, M. Wiyugo, and D. Apriliani, “Implementasi Location Based Service Pada Aplikasi Pencarian Agen Travel Tegal,” J. Politek. Caltex Riau, vol. 3, no. 2, p. 181, 2017.
  8. A. Fatoni and D. Dwi, “Rancang Bangun Sistem Extreme Programming Sebagai Metodologi Pengembangan Sistem,” Prosisko, vol. 3, no. 1, pp. 1–4, 2016.
  9. R. A. Sukamto and M. Shalahuddin, Rekayasa Perangkat Lunak Terstruktur dan Berorientasi Objek. Bandung: Informatika Bandung, 2014.