Main Article Content

Abstract

Alzheimer's disease is a degenerative brain disease and the most common cause of dementia. It is characterized by deterioration of memory, language, problem-solving, and other cognitive skills that affect a person's ability to perform everyday activities. This decrease occurs because nerve cells (neurons) in parts of the brain involved in cognitive function are damaged and stop working properly. One way to detect Alzheimer’s is to use models of machine learning algorithms. In this study, the authors' team aimed to compare models of machine learning algorithms to find the one that gives better results in  prediction Alzheimer's disease. Machine learning models algorithms in this study were built using Random Forest, Artificial Neural Network, Logistic Regression, Support Vector Machines, and Naive Bayes. The author's team then tested his 373 Alzheimer's disease patient data from Kaggle Open Datasets and showed that the Logistic Regression algorithm model can achieve better with 85,71% accuracy rate.

Article Details

Author Biographies

Firman Akbar, STMIK Amik Riau

STMIK Amik Riau

Rahmaddeni, STMIK Amik Riau

STMIK Amik Riau
How to Cite
Firman Akbar, & Rahmaddeni. (2022). Komparasi Algoritma Machine Learning Untuk Memprediksi Penyakit Alzheimer. Jurnal Komputer Terapan , 8(2), 236–245. https://doi.org/10.35143/jkt.v8i2.5713

References

  1. L. Brand, K. Nichols, H. Wang, H. Huang, dan L. Shen, “Predicting Longitudinal Outcomes of Alzheimer’s Disease via a Tensor-Based Joint Classification and Regression Model the Creative Commons Attribution Non-Commercial (CC BY-NC) 4.0 License. HHS Public Access,” 2020.
  2. K. M. Mehta dan G. W. Yeo, “Systematic review of dementia prevalence and incidence in United States race/ethnic populations,” Alzheimer’s & Dementia, vol. 13, no. 1, hlm. 72–83, 2017, doi: https://doi.org/10.1016/j.jalz.2016.06.2360.
  3. N. Petrucciani dkk., “Pancreatectomy combined with multivisceral resection for pancreatic malignancies: is it justified? Results of a systematic review,” HPB, vol. 20, no. 1, hlm. 3–10, 2018, doi: https://doi.org/10.1016/j.hpb.2017.08.002.
  4. S. Janelidze dkk., “Plasma P-tau181 in Alzheimer’s disease: relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer’s dementia,” Nat Med, vol. 26, no. 3, hlm. 379–386, 2020, doi: 10.1038/s41591-020-0755-1.
  5. N. Mattsson dkk., “Predicting diagnosis and cognition with 18F-AV-1451 tau PET and structural MRI in Alzheimer’s disease,” Alzheimer’s & Dementia, vol. 15, no. 4, hlm. 570–580, 2019, doi: https://doi.org/10.1016/j.jalz.2018.12.001.
  6. C. Song dkk., “Immunotherapy for Alzheimer’s disease: targeting β-amyloid and beyond,” Transl Neurodegener, vol. 11, no. 1, hlm. 18, 2022, doi: 10.1186/s40035-022-00292-3.
  7. J. J. Khanam dan S. Y. Foo, “A comparison of machine learning algorithms for diabetes prediction,” ICT Express, vol. 7, no. 4, hlm. 432–439, 2021.
  8. M. Aucoin dkk., “The effect of Echinacea spp. on the prevention or treatment of COVID-19 and other respiratory tract infections in humans: A rapid review,” Adv Integr Med, vol. 7, no. 4, hlm. 203–217, 2020.
  9. S. Khotimatul Wildah, S. Agustiani, M. S. Rangga Ramadhan, W. Gata, H. Mahmud Nawawi, dan S. Nusa Mandiri, “Deteksi Penyakit Alzheimer Menggunakan Algoritma Naïve Bayes dan Correlation Based Feature Selection,” JURNAL INFORMATIKA, vol. 7, no. 2, hlm. 166–173, 2020, [Daring]. Available: http://ejournal.bsi.ac.id/ejurnal/index.php/ji/article/view/8226/0.
  10. M. Bari Antor dkk., “A Comparative Analysis of Machine Learning Algorithms to Predict Alzheimer’s Disease,” J Healthc Eng, vol. 2021, hlm. 9917919, 2021, doi: 10.1155/2021/9917919.
  11. R. Rahmaddeni, M. K. Anam, Y. Irawan, S. Susanti, dan M. Jamaris, “Comparison of Support Vector Machine and XGBSVM in Analyzing Public Opinion on Covid-19 Vaccination,” ILKOM Jurnal Ilmiah, vol. 14, no. 1, 2022.
  12. R. R. Rerung, “Penerapan Data Mining dengan Memanfaatkan Metode Association Rule untuk Promosi Produk,” Jurnal Teknologi Rekayasa, vol. 3, no. 1, hlm. 89–98, 2018, doi: 10.31544/jtera.v3.i1.2018.89-98.
  13. H. S. Obaid, S. A. Dheyab, dan S. S. Sabry, “The Impact of Data Pre-Processing Techniques and Dimensionality Reduction on the Accuracy of Machine Learning,” dalam 2019 9th Annual Information Technology, Electromechanical Engineering and Microelectronics Conference (IEMECON), 2019, hlm. 279–283. doi: 10.1109/IEMECONX.2019.8877011.
  14. F. Akbar, H. W. Saputra, A. K. Maulaya, M. F. Hidayat, dan R. Rahmaddeni, “Implementasi Algoritma Decision Tree C4. 5 dan Support Vector Regression untuk Prediksi Penyakit Stroke: Implementation of Decision Tree Algorithm C4. 5 and Support Vector Regression for Stroke Disease Prediction,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 2, no. 2, hlm. 61–67, 2022.
  15. J. Hao dan T. K. Ho, “Machine Learning Made Easy: A Review of Scikit-learn Package in Python Programming Language,” Journal of Educational and Behavioral Statistics, vol. 44, no. 3, hlm. 348–361, Feb 2019, doi: 10.3102/1076998619832248.
  16. H. Jayadianti, T. A. Cahyadi, N. A. Amri, dan M. F. Pitayandanu, “Metode Komparasi Artificial Neural Network pada Prediksi Curah Hujan-Literature Review,” Jurnal Tekno Insentif, vol. 14, no. 2, hlm. 47–53, 2020.
  17. L. Khanady, “PREDIKSI HARGA SAHAM DENGAN MENGGUNAKAN JST (JARINGAN SYARAF TIRUAN),” JURNAL ILMIAH INFORMATIKA, vol. 7, no. 01, hlm. 1–4, Mar 2019, doi: 10.33884/jif.v7i01.793.
  18. G. A. V. Pai, “Fundamentals of Neural Networks,” NEURAL NETWORKS, FUZZY SYSTEMS AND EVOLUTIONARY ALGORITHMS: SYNTHESIS AND APPLICATIONS, hlm. 11, 2017.
  19. P. Matondang, S. Saifullah, dan J. T. Hardinata, “Penerapan Algoritma Backprogation Untuk Memprediksi Tingkat Kerawanan Banjir di Wilayah Kabupaten Mandailing Natal,” TIN: Terapan Informatika Nusantara, vol. 1, no. 11, hlm. 582–586, 2021.
  20. M. Dennis, R. Rahmaddeni, F. Zoromi, dan M. K. Anam, “Penerapan Algoritma Naïve Bayes Untuk Pengelompokkan Predikat Peserta Uji Kemahiran Berbahasa Indonesia,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 6, no. 2, hlm. 1183–1190, 2022.
  21. V. W. Siburian dan I. E. Mulyana, “Prediksi Harga Ponsel Menggunakan Metode Random Forest,” dalam Annual Research Seminar (ARS), 2019, vol. 4, no. 1, hlm. 144–147.
  22. E. H. Houssein, A. Hammad, dan A. A. Ali, “Human emotion recognition from EEG-based brain–computer interface using machine learning: a comprehensive review,” Neural Comput Appl, vol. 34, no. 15, hlm. 12527–12557, 2022, doi: 10.1007/s00521-022-07292-4.
  23. D. Chandola, A. Mehta, S. Singh, V. A. Tikkiwal, dan H. Agrawal, “Forecasting Directional Movement of Stock Prices using Deep Learning,” Annals of Data Science, 2022, doi: 10.1007/s40745-022-00432-6.
  24. F. Tempola, M. Muhammad, dan A. Khairan, “Perbandingan Klasifikasi Antara KNN dan Naive Bayes pada Penentuan Status Gunung Berapi dengan K-Fold Cross Validation,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 5, no. 5, hlm. 577–584, 2018.