Main Article Content

Abstract

The research is based on the DeepSun method, a system that uses Convolution Artificial Neural Networks (CNNs) to classify the phases of sunlight by color. Light phases such as the Golden Hour, Blue Hour, and Pink Hour have distinctive visual characteristics, and identifying these light phases automatically can provide a better understanding of the mood and aesthetics of an image. The proposed approach uses a dataset consisting of images collected during various sunlight conditions. The data is annotated with the appropriate light phase label. CNNs are used to extract important features from these images. Then, those features are used as inputs for classifiers trained using machine learning algorithms. Experiments were conducted to evaluate the performance of the DeepSun system. The results obtained show that this system is able to classify the phases of sunlight with a high degree of accuracy. Misclassification mainly occurs when light conditions are very similar between certain phases. However, by increasing the amount of training data and improving the CNN architecture, the accuracy rate can be further improved. With the ability to classify the phases of sunlight. With the ability to classify the phases of sunlight automatically, DeepSun can help users to choose the right time to take quality pictures. In addition, the system can also be used to improve automatic image processing and editing based on the desired light phase.

Keywords

DeepSun klasifikasi fase cahaya matahari warn CNN

Article Details

Author Biography

Juni Nurma Sari, Politeknik Caltex Riau

Magister Terapan Teknik Komputer Politeknik Caltex Riau
How to Cite
nengsih, warnia, Juni Nurma Sari, J. N. S., Angresta, C., & Dwinas, H. F. (2023). DeepSun: Klasifikasi Fase Cahaya Matahari Berdasarkan Warna Menggunakan CNN. Jurnal Komputer Terapan, 9(2), 182–190. https://doi.org/10.35143/jkt.v9i2.6182

References

  1. Alotaibi, A., & Mahmood, A.. “Automatic Segmentation and Classification of Sun Phase Images Using Convolutional Neural Networks”. IEEE Access, 9,2021, 131119-131134.
  2. Sheppard, C., Chilcott, A., & Wong, K. W. (2021). Sun Classifications Using Convolutional Neural Networks for Astronomical Image Data. In Proceedings of the International MultiConference of Engineers and Computer Scientists (IMECS), Vol II.
  3. Liu, J., Liu, J., Guo, T., & Chen, L. 2021. Sun Exposure Classification Based on Deep Learning. In 2021 IEEE 12th International Conference on Software Engineering and Service Science (ICSESS) (pp. 1325-1328). IEEE.
  4. Gupta, P., Kumar, S., & Mandal, J. K. 2020. Solar Phase Recognition using CNN. In 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT) (pp. 1-5). IEEE.
  5. I. Wulandari, H. Yasin, and T. Widiharih, “Klasifikasi Citra Digital Bumbu Dan Rempah Dengan Algoritma Convolutional Neural Network (CNN),” J. Gaussian, vol. 9, no. 3, pp. 273–282, 2020, doi: 10.14710/j.gauss.v9i3.27416.
  6. F. F. Maulana and N. Rochmawati, “Klasifikasi Citra Buah Menggunakan Convolutional Neural Network,” J. Informatics Comput. Sci., vol. 01, pp. 104–108, 2019.
  7. C. Umam and L. Budi Handoko, “Convolutional Neural Network (CNN) Untuk Identifkasi Karakter Hiragana,” Pros. Semin. Nas. Lppm Ump, vol. 0, no. 0, pp. 527–533, 2020.
  8. A. R. Maulana and N. Rochmawati, “Opinion Mining Terhadap Pemberitaan Corona di Instagram menggunakan Convolutional Neural Network,” JINACS J. Informatics Comput. Sci., vol. 02, no. 01,2020, pp. 53–59
  9. A. Kholik, A. Harjoko, and W. Wahyono, “Classification of Traffic Vehicle Density Using Deep Learning,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 14, no. 1, p. 69, 2020, doi: 10.22146/ijccs.50376
  10. Z. J. Wang et al., “CNN Explainer: Learning Convolutional Neural Networks with Interactive Visualization,” Apr. 2020, doi: 10.1109/TVCG.2020.3030418.
  11. A. Peryanto, A. Yudhana, and R. Umar, “Klasifikasi Citra Menggunakan Convolutional Neural Network dan K Fold Cross Validation,” 2020. [Online]. Available: http://jurnal.polibatam.ac.id/index.php/JAIC
  12. F. Fitra Maulana and N. Rochmawati, “Klasifikasi Citra Buah Menggunakan Convolutional Neural Network,” vol. 01, no. 02, 2019.
  13. E. N. Arrofiqoh and H. Harintaka, “Implementasi Metode Convolutional Neural Network untuk Klasifikasi Tanaman pada Citra Resolusi Tinggi,” vol. 24, no. 2, p. 61, Nov. 2018, doi: 10.24895/jig.2018.24- 2.810.
  14. Lorentius, C.A dkk.. “Pengenalan Aksara Jawa dengan Menggunakan Metode Convolutional Neural Network”. Jurnal Infra Vol.7, No.1.2019.
  15. Arrofiqoh, Erlyna Nour dan Harintaka.. Implementasi Metode Convolutional Neural Network untuk Klasifikasi Tanaman pada Citra Resolusi Tinggi. Jurnal Geomatika. Vol : 24, No : 2. 61-68, 2018

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.