Main Article Content

Abstract

The risk of injury in weightlifting, particularly in the deadlift movement, is often caused by subjective initial load determination and exacerbated by the egolifting phenomenon. To mitigate this risk, this research proposes an intelligent hybrid model for personalized load recommendation. This model integrates a Fuzzy Inference System (FIS) with a Genetic Algorithm (GA) to perform end-to-end parameter optimization. The fuzzy system utilizes four inputs (BMI, WHtR, RHR, Experience) to represent the user's condition. The Genetic Algorithm then automatically tunes 18 crucial system parameters, including membership functions and adjustment factors, using 20 real data points from an expert as the ground truth. The research results show that optimization using GA successfully reduced the Mean Absolute Error (MAE) significantly. The validated final model achieved an accuracy of 74.78% and an MAE of 6.37 kg, confirming that the hybrid Fuzzy-Genetic approach is a superior method for tuning quantitative recommendation systems, resulting in more precise and reliable decisions.

Keywords

Fuzzy Inference System Genetic Algorithm Optimization Load Recommendation Deadlift

Article Details

Author Biography

Arief Hermawan, Universitas Teknologi Yogyakarta

Prodi Informatika Fakultas Sains dan Teknologi Universitas Teknologi Yogyakarta
How to Cite
Naufal, A. R., & Hermawan, A. (2025). OPTIMIZATION OF FUZZY INFERENCE SYSTEM USING GENETIC ALGORITHM FOR PERSONALIZED INITIAL DEADLIFT LOAD RECOMMENDATION. Jurnal Komputer Terapan, 11(2), 77–87. https://doi.org/10.35143/jkt.v11i2.6780

References

  1. National Safety Council, “Sports and Recreational Injuries,” 2023.
  2. M. Preinl and K. Stolarz, “Injuries of the Lower Back in Powerlifting: A Literature Review with Meta-Analysis,” Polish Journal of Sports Medicine, vol. 40, no. 2, pp. 17–27, Jun. 2024, doi: 10.5604/01.3001.0054.6539.
  3. Z. Shou and Y. Hou, “Optimizing Athlete Training and Injury Mitigation Using Fuzzy Information-Based Skeletal Motion Analysis,” IEEE Access, 2024, doi: 10.1109/ACCESS.2024.3512416.
  4. C. Jurnal Pendidikan dan Pengajaran et al., “Penerapan Logika Fuzzy Untuk Sistem Rekomendasi Peminatan Siswa Dalam Memenetukan Jurusan SMK Negeri 1 Seyegan,” vol. 3, no. 1, pp. 259–265, 2025.
  5. I. Karima and A. Rahman, “Implementasi Metode Fuzzy Mamdani dalam Pengambilan Keputusan Rekomendasi Jumlah Produksi,” Jurnal Inovasi Komputer (INOKOM), vol. 1, no. 1, 2024, [Online]. Available: https://jurnal.citanusantara.id/index.php/inokom
  6. Arini Andhini Putri, Arya Maulana Yafi, Pranajelita Yuaini, and Sari Anggraini Puspita, “Prediksi Rekomendasi Restoran dengan Metode Fuzzy,” 2023.
  7. An Peng, “Fuzzy Decision Support Systems to Improve the Effectiveness of Training Programs in the Field of Sports Fitness,” International Journal of Computational Intelligence Systems, vol. 17, no. 1, Dec. 2024, doi: 10.1007/s44196-024-00555-z.
  8. F. N. Kaulika, K. Yulianti, E. Puspita, and R. Marwati, “Peramalan Kualitas Udara Kota Bandung dengan Metode Fuzzy Mamdani dan Algoritma Genetika-Fuzzy Time Series,” Epsilon: Jurnal Matematika Murni dan Terapan, vol. 19, no. 1, pp. 41–53, 2025, [Online]. Available: http://ppjp.ulm.ac.id/journals/index.php/epsilon
  9. R. Fatoni and R. Kusumawati, “Analisis Portofolio Optimal Fuzzy Mean Absolute Deviation dengan Algoritma Genetika Optimal Portfolio Analysis of Fuzzy Mean Absolute Deviation Using Genetics Algorithm,” 2022. [Online]. Available: https://finance.yahoo.com.
  10. A. Rifa’i, “Prediksi Inflasi Indonesia Berdasarkan Fuzzy Ann Menggunakan Algoritma Genetika,” Jurnal ELTIKOM, vol. 5, no. 1, pp. 12–24, Mar. 2021, doi: 10.31961/eltikom.v5i1.215.
  11. R. Hartayu, K. Paranita Kartika Riyanti, A. Ridho, W. Setyo Pambudi, and M. Ary Heryanto, “Optimasi Parameter Membership Function pada Sistem Kendali Robot Balancing Menggunakan Algoritma Genetika,” SinarFe7, vol. 7, no. 1, pp. 315–322, 2025.
  12. Rizqianingsih, “Algoritma Genetika Fuzzy dan Aplikasinya pada Permasalahan Rute Terdekat (Studi Kasus: Shopee Express),” 2025.
  13. F. R. Dewi, N. L. Azizah, and H. Hindarto, “Implementasi Fuzzy Tsukamoto Dan Algoritma Genetika Pada Pemilihan Skincare,” Jurnal Teknologi Dan Sistem Informasi Bisnis, vol. 5, no. 2, pp. 95–102, Apr. 2023, doi: 10.47233/jteksis.v5i2.785.
  14. M. Zuyyinal Haqqul Barir, F. Kurniawan, and S. Harini, “Perbandingan Metode Penjadwalan di Universitas Hasyim Asy’ari Menggunakan Logika Fuzzy Mamdani dan Sugeno Terhadap Algoritma Genetika,” Teknik dan Teknologi Terapan, vol. 1, no. 2, pp. 110–121, 2024, doi: 10.5281/zenodo.13749135.
  15. Dwinita Arwidiyarti, J. Juhartini, and Surni Erniwati, “Sistem Pakar Mendiagnosis Penyakit Mata Manusia Menggunakan Metode Fuzzy Mamdani,” Jurnal PROCESSOR, vol. 19, no. 1, May 2024, doi: 10.33998/processor.2024.19.1.1627.