Main Article Content
Abstract
Keywords
Article Details
Copyright (c) 2021 Jurnal Komputer TerapanÂ
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright info for authors
1. Authors hold the copyright in any process, procedure, or article described in the work and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors retain publishing rights to re-use all or portion of the work in different work but can not granting third-party requests for reprinting and republishing the work.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) as it can lead to productive exchanges, as well as earlier and greater citation of published work.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License
References
- E. Sin and L. Wang, 2017, Bitcoin Price Prediction Using Ensembles of Neural Network, 13th Int. Conf. Nat. Comput. Fuzzy Syst. Knowl. Discov., pp. 666–671.
- T. Phaladisailoed, 2018, Machine Learning Models Comparison for Bitcoin Price Prediction, 10th Int. Conf. Inf. Technol. Electr. Eng., pp. 506– 511.
- A. Viswam, 2017, An Efficient Bitcoin Fraud Detection in Social Media Networks, pp. 1–4.
- S. Velankar, S. Valecha, S. Maji, and A. Bitcoin, 2018, Bitcoin Price Prediction using Machine Learning, pp. 144–147.
- S. Hong and H. Kim, 2019, Analysis of Bitcoin Exchange Using Relationship of Transactions and Addresses, 21st Int. Conf. Adv. Commun. Technol., pp. 67–70.
- M. S. Kumar, V. Soundarya, S. Kavitha, E. S. Keerthika, and E. Aswini, 2019, Credit Card Fraud Detection, 3rd Int. Conf. Comput. Commun. Technol., pp. 149–153.
- B. J. Samajpati and S. D. Degadwala, 2016, “Hybrid Approach for Apple Fruit Diseases Detection and Classification Using Random Forest Classifier,†no. 2013, pp. 1015–1019.
- Mudassir M, et al. 4 July 2020. Time-series forecasting of Bitcoin prices using high dimensional features: a machine learning approach. Neural Computing and Applications https://doi.org/10.1007/s00521-020-05129-6.
- Fiadhi J, et al, 20 April 2020, Bitcoin Price Prediction using ARIMA Model, https://www.researchgate.net/publication/328989226 DOI: 10.36227/techrxiv.12098067
- Dharminder Singh Virk, 2016, Prediction of Bitcoin Price using Data Mining, National College of Ireland, School of Computing.
- Ahmed I et al, January 2021, Predicting market movement direction for bitcoin: A comparison of time series modeling methods, Elsevier Computer & Electrical Engineering, https://doi.org/10.1016/j.compeleceng.2020.106905.
- S Saadah, A Whafa, August 2020, Monitoring Financial Stability Based on Prediction of Cryptocurrencies Price Using Intelligent Algorithm. 2020 International Conference on Data Science and Its Applications (ICoDSA), https://ieeexplore.ieee.org/document/9212968.
- Lekkala S.R and Siramya P, April 2020, A Research on Bitcoin Price Prediction Using Machine Learning Algorithm, International Journal of Scientific and Technology Resarch Volume 9.
- Madan I et al, Automated Bitcoin Trading via Machine Learning Algorithm, Research from Department of Computer Science, Stanford University.
- Sabah A and Ansari M, April 2020, Bitcoin Price Prediction Using ARIMA Model, 10.36227/techrxiv.12098067.
- Yang Li, Zibin Zeng and Dai H.N, July 2020, Enhancing Bitcoin Price Fluctuation Prediction Using Attentive LSTM and Embedding Network.
- Mudassir M et al, June 2020, Time-Series Forecasting of Bitcoin Prices Using High Dimensional Features: Machine Learning Approach, Springer Neural Computing and Applications.
- Danielle Denisko and Michaele M. Hoffman, 2018, Classification and interaction in random forests. PNAS February 20, 2018 115 (8) 1690-1692; first published February 12, 2018; https://doi.org/10.1073/pnas.1800256115.
- Naghib A and Habibi R, December 2020, Crypto-Currency Price Prediction with Decision Tree Based Regressions Approach, Journal of Algorithms and Computation.
- V. Derbentsev et al, January 2021, Comparative Performance of Machine Learning Ensemble Algorithms for Forecasting Cryptocurrency Proces, International Journal of Engineering.
References
E. Sin and L. Wang, 2017, Bitcoin Price Prediction Using Ensembles of Neural Network, 13th Int. Conf. Nat. Comput. Fuzzy Syst. Knowl. Discov., pp. 666–671.
T. Phaladisailoed, 2018, Machine Learning Models Comparison for Bitcoin Price Prediction, 10th Int. Conf. Inf. Technol. Electr. Eng., pp. 506– 511.
A. Viswam, 2017, An Efficient Bitcoin Fraud Detection in Social Media Networks, pp. 1–4.
S. Velankar, S. Valecha, S. Maji, and A. Bitcoin, 2018, Bitcoin Price Prediction using Machine Learning, pp. 144–147.
S. Hong and H. Kim, 2019, Analysis of Bitcoin Exchange Using Relationship of Transactions and Addresses, 21st Int. Conf. Adv. Commun. Technol., pp. 67–70.
M. S. Kumar, V. Soundarya, S. Kavitha, E. S. Keerthika, and E. Aswini, 2019, Credit Card Fraud Detection, 3rd Int. Conf. Comput. Commun. Technol., pp. 149–153.
B. J. Samajpati and S. D. Degadwala, 2016, “Hybrid Approach for Apple Fruit Diseases Detection and Classification Using Random Forest Classifier,†no. 2013, pp. 1015–1019.
Mudassir M, et al. 4 July 2020. Time-series forecasting of Bitcoin prices using high dimensional features: a machine learning approach. Neural Computing and Applications https://doi.org/10.1007/s00521-020-05129-6.
Fiadhi J, et al, 20 April 2020, Bitcoin Price Prediction using ARIMA Model, https://www.researchgate.net/publication/328989226 DOI: 10.36227/techrxiv.12098067
Dharminder Singh Virk, 2016, Prediction of Bitcoin Price using Data Mining, National College of Ireland, School of Computing.
Ahmed I et al, January 2021, Predicting market movement direction for bitcoin: A comparison of time series modeling methods, Elsevier Computer & Electrical Engineering, https://doi.org/10.1016/j.compeleceng.2020.106905.
S Saadah, A Whafa, August 2020, Monitoring Financial Stability Based on Prediction of Cryptocurrencies Price Using Intelligent Algorithm. 2020 International Conference on Data Science and Its Applications (ICoDSA), https://ieeexplore.ieee.org/document/9212968.
Lekkala S.R and Siramya P, April 2020, A Research on Bitcoin Price Prediction Using Machine Learning Algorithm, International Journal of Scientific and Technology Resarch Volume 9.
Madan I et al, Automated Bitcoin Trading via Machine Learning Algorithm, Research from Department of Computer Science, Stanford University.
Sabah A and Ansari M, April 2020, Bitcoin Price Prediction Using ARIMA Model, 10.36227/techrxiv.12098067.
Yang Li, Zibin Zeng and Dai H.N, July 2020, Enhancing Bitcoin Price Fluctuation Prediction Using Attentive LSTM and Embedding Network.
Mudassir M et al, June 2020, Time-Series Forecasting of Bitcoin Prices Using High Dimensional Features: Machine Learning Approach, Springer Neural Computing and Applications.
Danielle Denisko and Michaele M. Hoffman, 2018, Classification and interaction in random forests. PNAS February 20, 2018 115 (8) 1690-1692; first published February 12, 2018; https://doi.org/10.1073/pnas.1800256115.
Naghib A and Habibi R, December 2020, Crypto-Currency Price Prediction with Decision Tree Based Regressions Approach, Journal of Algorithms and Computation.
V. Derbentsev et al, January 2021, Comparative Performance of Machine Learning Ensemble Algorithms for Forecasting Cryptocurrency Proces, International Journal of Engineering.