Main Article Content
Abstract
Keywords
Article Details
Copyright (c) 2023 Jurnal Komputer Terapan
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright info for authors
1. Authors hold the copyright in any process, procedure, or article described in the work and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors retain publishing rights to re-use all or portion of the work in different work but can not granting third-party requests for reprinting and republishing the work.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) as it can lead to productive exchanges, as well as earlier and greater citation of published work.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License
References
- Kementerian Kesehatan Republik Indonesia, “Peran Ditjen Kesmas Daman Pandemi COVID 19 2020-2021,” Jakarta, 2021.
- A. Syauqi, “Jalan panjang covid19 (Sebuah Refleksi Dikala Wabah Merajalela Berdampak Pada Perekonomian),” JKUBS J. Chem. Inf. Model., vol. 1, no. 1, pp. 1–19, 2020.
- N. Mamoon and G. Rasskin, “COVID-19,” 2019. [Online]. Available: https://www.covidvisualizer.com/
- M. F. Asriansyah, “Pandemi Covid 19 dan Upaya Pencegahan,” 2022. https://www.djkn.kemenkeu.go.id/artikel/baca/15799/Pandemi-Covid-19-dan-Upaya-Pencegahan.html
- E. Martínez Chamorro, A. Díez Tascón, L. Ibáñez Sanz, S. Ossaba Vélez, and S. Borruel Nacenta, “Radiologic diagnosis of patients with COVID-19,” Radiologia, vol. 63, no. 1, pp. 56–73, 2021, doi: 10.1016/j.rx.2020.11.001.
- S. Ebrahimzadeh et al., “Thoracic imaging tests for the diagnosis of COVID-19,” 2022. doi: 10.1002/14651858.CD013639.pub5.
- S. Kamthan, H. Singh, and T. Meitzler, “Hierarchical fuzzy deep learning for image classification,” Memories - Mater. Devices, Circuits Syst., vol. 2, no. June, p. 100016, 2022, doi: 10.1016/j.memori.2022.100016.
- X. Zhang, H. Xiao, R. Gao, H. Zhang, and Y. Wang, “K-nearest neighbors rule combining prototype selection and local feature weighting for classification,” Knowledge-Based Syst., vol. 243, 2022, doi: 10.1016/j.knosys.2022.108451.
- Y. Guo, S. Han, Y. Li, C. Zhang, and Y. Bai, “K-Nearest Neighbor combined with guided filter for hyperspectral image classification,” Procedia Comput. Sci., vol. 129, pp. 159–165, 2018, doi: 10.1016/j.procs.2018.03.066.
- J. Wang, P. Neskovic, and L. N. Cooper, “Improving nearest neighbor rule with a simple adaptive distance measure,” Pattern Recognit. Lett., vol. 28, no. 2, pp. 207–213, 2007, doi: 10.1016/j.patrec.2006.07.002.
- J. A. Romero-del-Castillo, M. Mendoza-Hurtado, D. Ortiz-Boyer, and N. García-Pedrajas, “Local-based k values for multi-label k-nearest neighbors rule,” Eng. Appl. Artif. Intell., vol. 116, no. June, p. 105487, 2022, doi: 10.1016/j.engappai.2022.105487.
- S. Ougiaroglou and G. Evangelidis, “Fast and accurate k-nearest neighbor classification using prototype selection by clustering,” Proc. 2012 16th Panhellenic Conf. Informatics, PCI 2012, no. i, pp. 168–173, 2012, doi: 10.1109/PCi.2012.69.
- L. Cai, Y. Song, T. Liu, and K. Zhang, “A Hybrid BERT Model That Incorporates Label Semantics via Adjustive Attention for Multi-Label Text Classification,” IEEE Access, vol. 8, pp. 152183–152192, 2020, doi: 10.1109/ACCESS.2020.3017382.
- K. Li, H. Wang, W. Wang, F. Wang, and Z. Cui, “Improving artificial bee colony algorithm using modified nearest neighbor sequence,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 10, pp. 8807–8824, 2022, doi: 10.1016/j.jksuci.2021.10.012.
- X. Wu et al., Top 10 algorithms in data mining, vol. 14, no. 1. 2008. doi: 10.1007/s10115-007-0114-2.
- G. I. Okolo, S. Katsigiannis, and N. Ramzan, “IEViT: An enhanced vision transformer architecture for chest X-ray image classification,” Comput. Methods Programs Biomed., vol. 226, p. 107141, 2022, doi: 10.1016/j.cmpb.2022.107141.
- S. Suyanto, P. E. Yunanto, T. Wahyuningrum, and S. Khomsah, “A multi-voter multi-commission nearest neighbor classifier,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 8, pp. 6292–6302, 2022, doi: 10.1016/j.jksuci.2022.01.018.
- A. Islam, S. B. Belhaouari, A. U. Rehman, and H. Bensmail, “K Nearest Neighbor OveRsampling approach: An open source python package for data augmentation,” Softw. Impacts, vol. 12, no. February, p. 100272, 2022, doi: 10.1016/j.simpa.2022.100272.
- M. Kumar, N. K. Rath, A. Swain, and S. K. Rath, “Feature Selection and Classification of Microarray Data using MapReduce based ANOVA and K-Nearest Neighbor,” Procedia Comput. Sci., vol. 54, pp. 301–310, 2015, doi: 10.1016/j.procs.2015.06.035.
- P. Nair et al., “A new COVID-19 intubation prediction strategy using an intelligent feature selection and K-NN method,” Int. J. Sci. Technol. Res., vol. 28, no. 3, pp. 221–226, 2020, doi: 10.1016/j.imu.2021.100825.
- K. U. Syaliman, Yuliska, and N. F. Najwa, “Seleksi Fitur Menggunakan Pendekatan k-Nearest Neighbor,” J. Sist. Inf. dan Teknol. Jar., vol. 3, no. 1, pp. 8–13, 2022.
- K. U. Syaliman, A. Labellapansa, and A. Yulianti, “Improving the Accuracy of Features Weighted k-Nearest Neighbor using Distance Weight,” no. ICoSET 2019, pp. 326–330, 2020, doi: 10.5220/0009390903260330.
- P. A. Charde and S. D. Lokhande, “Classification Using K Nearest Neighbor for Brain Image Retrieval,” J. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 8, pp. 760–765, 2013, doi: 10.25126/jtiik.2020722608.
- L. Farokhah, “Implementasi K-Nearest Neighbor untuk Klasifikasi Bunga Dengan Ekstraksi Fitur Warna RGB,” J. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 6, p. 1129, 2020, doi: 10.25126/jtiik.2020722608.
- Z. Pan, Y. Wang, and W. Ku, “A new k-harmonic nearest neighbor classifier based on the multi-local means,” Expert Syst. Appl., vol. 67, pp. 115–125, 2017, doi: 10.1016/j.eswa.2016.09.031.
- J. Gou, H. Ma, W. Ou, S. Zeng, Y. Rao, and H. Yang, “A generalized mean distance-based k-nearest neighbor classifier,” Expert Syst. Appl., vol. 115, pp. 356–372, 2019, doi: 10.1016/j.eswa.2018.08.021.
- K. U. Syaliman, E. B. Nababan, and O. S. Sitompul, “Improving the accuracy of k-nearest neighbor using local mean based and distance weight,” J. Phys. Conf. Ser., vol. 978, no. 1, pp. 1–6, 2018, doi: 10.1088/1742-6596/978/1/012047.
- Y. Mitani and Y. Hamamoto, “A local mean-based nonparametric classifier,” Pattern Recognit. Lett., vol. 27, no. 10, pp. 1151–1159, 2006, doi: 10.1016/j.patrec.2005.12.016.
- S. A. Dudani, “The Distance-Weighted k-Nearest-Neighbor Rule,” IEEE Trans. Syst. Man, Cybern. Part B Cybern., vol. SMC-8, no. 4, pp. 311–313, 1978, doi: 10.1109/tsmc.1978.4309958.
- N. García-Pedrajas and D. Ortiz-Boyer, “Boosting k-nearest neighbor classifier by means of input space projection,” Expert Syst. Appl., vol. 36, no. 7, pp. 10570–10582, 2009, doi: 10.1016/j.eswa.2009.02.065.
- A. Kataria and M. D. Singh, “A Review of Data Classification Using K-Nearest Neighbour Algorithm,” Int. J. Emerg. Technol. Adv. Eng., vol. 3, no. 6, pp. 354–360, 2013.
- Z. Lei, S. Wang, and D. Xu, “Protein sub-cellular localization based on noise-intensity-weighted linear discriminant analysis and an improved k-nearest-neighbor classifier,” Proc. - 2016 9th Int. Congr. Image Signal Process. Biomed. Eng. Informatics, CISP-BMEI 2016, no. 3, pp. 1871–1876, 2017, doi: 10.1109/CISP-BMEI.2016.7853022.
References
Kementerian Kesehatan Republik Indonesia, “Peran Ditjen Kesmas Daman Pandemi COVID 19 2020-2021,” Jakarta, 2021.
A. Syauqi, “Jalan panjang covid19 (Sebuah Refleksi Dikala Wabah Merajalela Berdampak Pada Perekonomian),” JKUBS J. Chem. Inf. Model., vol. 1, no. 1, pp. 1–19, 2020.
N. Mamoon and G. Rasskin, “COVID-19,” 2019. [Online]. Available: https://www.covidvisualizer.com/
M. F. Asriansyah, “Pandemi Covid 19 dan Upaya Pencegahan,” 2022. https://www.djkn.kemenkeu.go.id/artikel/baca/15799/Pandemi-Covid-19-dan-Upaya-Pencegahan.html
E. Martínez Chamorro, A. Díez Tascón, L. Ibáñez Sanz, S. Ossaba Vélez, and S. Borruel Nacenta, “Radiologic diagnosis of patients with COVID-19,” Radiologia, vol. 63, no. 1, pp. 56–73, 2021, doi: 10.1016/j.rx.2020.11.001.
S. Ebrahimzadeh et al., “Thoracic imaging tests for the diagnosis of COVID-19,” 2022. doi: 10.1002/14651858.CD013639.pub5.
S. Kamthan, H. Singh, and T. Meitzler, “Hierarchical fuzzy deep learning for image classification,” Memories - Mater. Devices, Circuits Syst., vol. 2, no. June, p. 100016, 2022, doi: 10.1016/j.memori.2022.100016.
X. Zhang, H. Xiao, R. Gao, H. Zhang, and Y. Wang, “K-nearest neighbors rule combining prototype selection and local feature weighting for classification,” Knowledge-Based Syst., vol. 243, 2022, doi: 10.1016/j.knosys.2022.108451.
Y. Guo, S. Han, Y. Li, C. Zhang, and Y. Bai, “K-Nearest Neighbor combined with guided filter for hyperspectral image classification,” Procedia Comput. Sci., vol. 129, pp. 159–165, 2018, doi: 10.1016/j.procs.2018.03.066.
J. Wang, P. Neskovic, and L. N. Cooper, “Improving nearest neighbor rule with a simple adaptive distance measure,” Pattern Recognit. Lett., vol. 28, no. 2, pp. 207–213, 2007, doi: 10.1016/j.patrec.2006.07.002.
J. A. Romero-del-Castillo, M. Mendoza-Hurtado, D. Ortiz-Boyer, and N. García-Pedrajas, “Local-based k values for multi-label k-nearest neighbors rule,” Eng. Appl. Artif. Intell., vol. 116, no. June, p. 105487, 2022, doi: 10.1016/j.engappai.2022.105487.
S. Ougiaroglou and G. Evangelidis, “Fast and accurate k-nearest neighbor classification using prototype selection by clustering,” Proc. 2012 16th Panhellenic Conf. Informatics, PCI 2012, no. i, pp. 168–173, 2012, doi: 10.1109/PCi.2012.69.
L. Cai, Y. Song, T. Liu, and K. Zhang, “A Hybrid BERT Model That Incorporates Label Semantics via Adjustive Attention for Multi-Label Text Classification,” IEEE Access, vol. 8, pp. 152183–152192, 2020, doi: 10.1109/ACCESS.2020.3017382.
K. Li, H. Wang, W. Wang, F. Wang, and Z. Cui, “Improving artificial bee colony algorithm using modified nearest neighbor sequence,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 10, pp. 8807–8824, 2022, doi: 10.1016/j.jksuci.2021.10.012.
X. Wu et al., Top 10 algorithms in data mining, vol. 14, no. 1. 2008. doi: 10.1007/s10115-007-0114-2.
G. I. Okolo, S. Katsigiannis, and N. Ramzan, “IEViT: An enhanced vision transformer architecture for chest X-ray image classification,” Comput. Methods Programs Biomed., vol. 226, p. 107141, 2022, doi: 10.1016/j.cmpb.2022.107141.
S. Suyanto, P. E. Yunanto, T. Wahyuningrum, and S. Khomsah, “A multi-voter multi-commission nearest neighbor classifier,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 8, pp. 6292–6302, 2022, doi: 10.1016/j.jksuci.2022.01.018.
A. Islam, S. B. Belhaouari, A. U. Rehman, and H. Bensmail, “K Nearest Neighbor OveRsampling approach: An open source python package for data augmentation,” Softw. Impacts, vol. 12, no. February, p. 100272, 2022, doi: 10.1016/j.simpa.2022.100272.
M. Kumar, N. K. Rath, A. Swain, and S. K. Rath, “Feature Selection and Classification of Microarray Data using MapReduce based ANOVA and K-Nearest Neighbor,” Procedia Comput. Sci., vol. 54, pp. 301–310, 2015, doi: 10.1016/j.procs.2015.06.035.
P. Nair et al., “A new COVID-19 intubation prediction strategy using an intelligent feature selection and K-NN method,” Int. J. Sci. Technol. Res., vol. 28, no. 3, pp. 221–226, 2020, doi: 10.1016/j.imu.2021.100825.
K. U. Syaliman, Yuliska, and N. F. Najwa, “Seleksi Fitur Menggunakan Pendekatan k-Nearest Neighbor,” J. Sist. Inf. dan Teknol. Jar., vol. 3, no. 1, pp. 8–13, 2022.
K. U. Syaliman, A. Labellapansa, and A. Yulianti, “Improving the Accuracy of Features Weighted k-Nearest Neighbor using Distance Weight,” no. ICoSET 2019, pp. 326–330, 2020, doi: 10.5220/0009390903260330.
P. A. Charde and S. D. Lokhande, “Classification Using K Nearest Neighbor for Brain Image Retrieval,” J. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 8, pp. 760–765, 2013, doi: 10.25126/jtiik.2020722608.
L. Farokhah, “Implementasi K-Nearest Neighbor untuk Klasifikasi Bunga Dengan Ekstraksi Fitur Warna RGB,” J. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 6, p. 1129, 2020, doi: 10.25126/jtiik.2020722608.
Z. Pan, Y. Wang, and W. Ku, “A new k-harmonic nearest neighbor classifier based on the multi-local means,” Expert Syst. Appl., vol. 67, pp. 115–125, 2017, doi: 10.1016/j.eswa.2016.09.031.
J. Gou, H. Ma, W. Ou, S. Zeng, Y. Rao, and H. Yang, “A generalized mean distance-based k-nearest neighbor classifier,” Expert Syst. Appl., vol. 115, pp. 356–372, 2019, doi: 10.1016/j.eswa.2018.08.021.
K. U. Syaliman, E. B. Nababan, and O. S. Sitompul, “Improving the accuracy of k-nearest neighbor using local mean based and distance weight,” J. Phys. Conf. Ser., vol. 978, no. 1, pp. 1–6, 2018, doi: 10.1088/1742-6596/978/1/012047.
Y. Mitani and Y. Hamamoto, “A local mean-based nonparametric classifier,” Pattern Recognit. Lett., vol. 27, no. 10, pp. 1151–1159, 2006, doi: 10.1016/j.patrec.2005.12.016.
S. A. Dudani, “The Distance-Weighted k-Nearest-Neighbor Rule,” IEEE Trans. Syst. Man, Cybern. Part B Cybern., vol. SMC-8, no. 4, pp. 311–313, 1978, doi: 10.1109/tsmc.1978.4309958.
N. García-Pedrajas and D. Ortiz-Boyer, “Boosting k-nearest neighbor classifier by means of input space projection,” Expert Syst. Appl., vol. 36, no. 7, pp. 10570–10582, 2009, doi: 10.1016/j.eswa.2009.02.065.
A. Kataria and M. D. Singh, “A Review of Data Classification Using K-Nearest Neighbour Algorithm,” Int. J. Emerg. Technol. Adv. Eng., vol. 3, no. 6, pp. 354–360, 2013.
Z. Lei, S. Wang, and D. Xu, “Protein sub-cellular localization based on noise-intensity-weighted linear discriminant analysis and an improved k-nearest-neighbor classifier,” Proc. - 2016 9th Int. Congr. Image Signal Process. Biomed. Eng. Informatics, CISP-BMEI 2016, no. 3, pp. 1871–1876, 2017, doi: 10.1109/CISP-BMEI.2016.7853022.