Main Article Content
Abstract
Keywords
Article Details
Copyright (c) 2020 Jurnal Komputer TerapanÂ
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright info for authors
1. Authors hold the copyright in any process, procedure, or article described in the work and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors retain publishing rights to re-use all or portion of the work in different work but can not granting third-party requests for reprinting and republishing the work.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) as it can lead to productive exchanges, as well as earlier and greater citation of published work.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License
References
- C. Hu, Q. Wu, H. Li, S. Jian, N. Li, and Z. Lou, “Deep learning with a long short-term memory networks approach for rainfall-runoff simulation,†Water (Switzerland), vol. 10, no. 11, pp. 1–16, 2018, doi: 10.3390/w10111543.
- J. Schmidhuber, “Deep Learning in neural networks: An overview,†Neural Networks, vol. 61, pp. 85–117, 2015, doi: 10.1016/j.neunet.2014.09.003.
- G. Ghazali, Jondri, and M. Si, “Prediksi saham menggunakan dbn ( deep belief network ) stock prediction using dbn ( deep belief network ),†eProceedings Eng., vol. 4, no. 1, pp. 1258–1273, 2017.
- W. Bao, J. Yue, and Y. Rao, “A deep learning framework for financial time series using stacked autoencoders and longshort term memory,†J. Cheminform., vol. 24, no. 4, pp. 1–11, 2018, doi: 10.6084/m9.figshare.5028110.
- S. Li, H. Fang, and B. Shi, “Multi-Step-Ahead Prediction with Long Short Term Memory Networks and Support Vector Regression,†Chinese Control Conf. CCC, vol. 2018-July, pp. 8104–8109, 2018, doi: 10.23919/ChiCC.2018.8484066.
- Z. Chen, Y. Liu, and S. Liu, “Mechanical state prediction based on LSTM neural netwok,†Chinese Control Conf. CCC, pp. 3876–3881, 2017, doi: 10.23919/ChiCC.2017.8027963.
- M. A. D. Suyudi, “Prediksi Harga Saham menggunakan Metode Recurrent Neural Network,†Wikipedia, vol. 052, no. 735, pp. 3–6, 2015.
- M. Rizki, “Implementasi Deep Learning Menggunakan Arsitektur Long Short Term Memory(Lstm) Untuk Prediksi Curah Hujan Kota Malang,†vol. 2, no. 3, pp. 331–338, 2019.
- M. Wildan, P. Aldi, and A. Aditsania, “Analisis dan Implementasi Long Short Term Memory Neural Network untuk Prediksi Harga Bitcoin,†e-Proceeding Eng., vol. 5, no. 2, pp. 3548–3555, 2018.
- A. Ubrani and S. Motwani, “LSTM- and GRU-based time series models for market clearing price forecasting of Indian deregulated electricity markets,†Adv. Intell. Syst. Comput., vol. 898, pp. 693–700, 2019, doi: 10.1007/978-981-13-3393-4_70.
- Q. Wang, Y. Guo, L. Yu, and P. Li, “Earthquake Prediction based on Spatio-Temporal Data Mining: An LSTM Network Approach,†IEEE Trans. Emerg. Top. Comput., vol. 6750, no. c, pp. 1–1, 2017, doi: 10.1109/tetc.2017.2699169.
References
C. Hu, Q. Wu, H. Li, S. Jian, N. Li, and Z. Lou, “Deep learning with a long short-term memory networks approach for rainfall-runoff simulation,†Water (Switzerland), vol. 10, no. 11, pp. 1–16, 2018, doi: 10.3390/w10111543.
J. Schmidhuber, “Deep Learning in neural networks: An overview,†Neural Networks, vol. 61, pp. 85–117, 2015, doi: 10.1016/j.neunet.2014.09.003.
G. Ghazali, Jondri, and M. Si, “Prediksi saham menggunakan dbn ( deep belief network ) stock prediction using dbn ( deep belief network ),†eProceedings Eng., vol. 4, no. 1, pp. 1258–1273, 2017.
W. Bao, J. Yue, and Y. Rao, “A deep learning framework for financial time series using stacked autoencoders and longshort term memory,†J. Cheminform., vol. 24, no. 4, pp. 1–11, 2018, doi: 10.6084/m9.figshare.5028110.
S. Li, H. Fang, and B. Shi, “Multi-Step-Ahead Prediction with Long Short Term Memory Networks and Support Vector Regression,†Chinese Control Conf. CCC, vol. 2018-July, pp. 8104–8109, 2018, doi: 10.23919/ChiCC.2018.8484066.
Z. Chen, Y. Liu, and S. Liu, “Mechanical state prediction based on LSTM neural netwok,†Chinese Control Conf. CCC, pp. 3876–3881, 2017, doi: 10.23919/ChiCC.2017.8027963.
M. A. D. Suyudi, “Prediksi Harga Saham menggunakan Metode Recurrent Neural Network,†Wikipedia, vol. 052, no. 735, pp. 3–6, 2015.
M. Rizki, “Implementasi Deep Learning Menggunakan Arsitektur Long Short Term Memory(Lstm) Untuk Prediksi Curah Hujan Kota Malang,†vol. 2, no. 3, pp. 331–338, 2019.
M. Wildan, P. Aldi, and A. Aditsania, “Analisis dan Implementasi Long Short Term Memory Neural Network untuk Prediksi Harga Bitcoin,†e-Proceeding Eng., vol. 5, no. 2, pp. 3548–3555, 2018.
A. Ubrani and S. Motwani, “LSTM- and GRU-based time series models for market clearing price forecasting of Indian deregulated electricity markets,†Adv. Intell. Syst. Comput., vol. 898, pp. 693–700, 2019, doi: 10.1007/978-981-13-3393-4_70.
Q. Wang, Y. Guo, L. Yu, and P. Li, “Earthquake Prediction based on Spatio-Temporal Data Mining: An LSTM Network Approach,†IEEE Trans. Emerg. Top. Comput., vol. 6750, no. c, pp. 1–1, 2017, doi: 10.1109/tetc.2017.2699169.