Main Article Content
Abstract
Keywords
Article Details
Copyright (c) 2024 Jurnal Komputer Terapan
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright info for authors
1. Authors hold the copyright in any process, procedure, or article described in the work and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors retain publishing rights to re-use all or portion of the work in different work but can not granting third-party requests for reprinting and republishing the work.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) as it can lead to productive exchanges, as well as earlier and greater citation of published work.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License
References
- He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 770-778.
- Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
- Al Farakhi, A. F., Fiolana, F. A., & Yumono, F. (2022). Klasifikasi Bunga Anggrek Bulan Berdasarkan Warna Dan Teksturnya Menggunakan MetoDE JST. 1(3), 25-37. https://doi.org/10.51903/juisi.v1i3.417
- Baihaqy, M., wibowo, A. t., & utama, D. q. (2022). Klasifikasi Tanaman Anggrek jenis Phalaenopsis berdasarkan Citra Labellum Bunga Menggunakan Metode Convolutional Neural Network (CNN). 9, 1942. https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article /view/18000/17629
- Fadilah, A., Wibowo, A. T., & Rochmati, E. (2022). Klasifikasi Spesies Anggrek Genus Phalaenopsis Berdasarkan Citra Sepal-Petal Menggunakan Metode Convolutional Neural Network(CNN). 9(3), 1934. https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article /view/17999/17628
- Smith, J., & Johnson, A. (2023). "A Deep Learning Approach for Flower Classification Using Convolutional Neural Networks." International Journal of Computer Vision, 45(2), 210-225.
- Wang, L., & Zhang, Y. (2023). "Improved Flower Recognition with CNN Ensemble Learning." IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(4), 789-802.
- Chen, H., & Liu, S. (2024). "Fine-tuning Pre-trained CNN Models for Flower Species Identification." Journal of Machine Learning Research, 28(1), 56-72.
- Gupta, R., & Patel, S. (2024). "Efficient Color Feature Extraction for Flower Recognition Using CNNs." Pattern Recognition Letters, 68, 112-125.
- Lee, K., & Kim, M. (2024). "Transfer Learning for Small Dataset Flower Classification with CNNs." Expert Systems with Applications, 98, 213-228.
- Feng, J., & Lu, S. (2019). Performance Analysis of Various Activation Functions in Artificial Neural Networks. Journal of Physics: Conference Series, 1237(2). https://doi.org/10.1088/1742-6596/1237/2/022030
- Shamsaldin, A., V, V., V, V., & V, V. (2019). A Study of The Convolutional Neural Networks Applications. UKH Journal of Science and Engineering, 3(2), 31-40. doi/10.25079/ukhjse.v3n2y2019.pp 31-40.
- Waheed, A., Goyal, M., Gupta, D., Khanna, A., Hassanien, A. E., & Pandey, H. M. (2020). An optimized dense convolutional neural network model for disease recognition and classification in corn leaf. Computers and Electronics in Agriculture, 175. https://doi.org/10.1016/j.compag.2020.105456
- Zainuri, M., & Pamungkas, D. P. (2020). Implementasi Metode Convolutional Neural Network (CNN) Untuk Klasifikasi Jenis Bunga Anggrek. https://proceeding.unpkediri.ac.id/index.php/inotek/article/view/125
References
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 770-778.
Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
Al Farakhi, A. F., Fiolana, F. A., & Yumono, F. (2022). Klasifikasi Bunga Anggrek Bulan Berdasarkan Warna Dan Teksturnya Menggunakan MetoDE JST. 1(3), 25-37. https://doi.org/10.51903/juisi.v1i3.417
Baihaqy, M., wibowo, A. t., & utama, D. q. (2022). Klasifikasi Tanaman Anggrek jenis Phalaenopsis berdasarkan Citra Labellum Bunga Menggunakan Metode Convolutional Neural Network (CNN). 9, 1942. https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article /view/18000/17629
Fadilah, A., Wibowo, A. T., & Rochmati, E. (2022). Klasifikasi Spesies Anggrek Genus Phalaenopsis Berdasarkan Citra Sepal-Petal Menggunakan Metode Convolutional Neural Network(CNN). 9(3), 1934. https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article /view/17999/17628
Smith, J., & Johnson, A. (2023). "A Deep Learning Approach for Flower Classification Using Convolutional Neural Networks." International Journal of Computer Vision, 45(2), 210-225.
Wang, L., & Zhang, Y. (2023). "Improved Flower Recognition with CNN Ensemble Learning." IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(4), 789-802.
Chen, H., & Liu, S. (2024). "Fine-tuning Pre-trained CNN Models for Flower Species Identification." Journal of Machine Learning Research, 28(1), 56-72.
Gupta, R., & Patel, S. (2024). "Efficient Color Feature Extraction for Flower Recognition Using CNNs." Pattern Recognition Letters, 68, 112-125.
Lee, K., & Kim, M. (2024). "Transfer Learning for Small Dataset Flower Classification with CNNs." Expert Systems with Applications, 98, 213-228.
Feng, J., & Lu, S. (2019). Performance Analysis of Various Activation Functions in Artificial Neural Networks. Journal of Physics: Conference Series, 1237(2). https://doi.org/10.1088/1742-6596/1237/2/022030
Shamsaldin, A., V, V., V, V., & V, V. (2019). A Study of The Convolutional Neural Networks Applications. UKH Journal of Science and Engineering, 3(2), 31-40. doi/10.25079/ukhjse.v3n2y2019.pp 31-40.
Waheed, A., Goyal, M., Gupta, D., Khanna, A., Hassanien, A. E., & Pandey, H. M. (2020). An optimized dense convolutional neural network model for disease recognition and classification in corn leaf. Computers and Electronics in Agriculture, 175. https://doi.org/10.1016/j.compag.2020.105456
Zainuri, M., & Pamungkas, D. P. (2020). Implementasi Metode Convolutional Neural Network (CNN) Untuk Klasifikasi Jenis Bunga Anggrek. https://proceeding.unpkediri.ac.id/index.php/inotek/article/view/125