Main Article Content

Abstract

Heart disease is one of the leading causes of death worldwide, making early detection crucial to prevent more serious complications. One of the methods that can be used is heart sound analysis, which contains important information related to the physiological and pathological conditions of the heart. However, the manual analysis process by healthcare professionals requires specialized skills and may result in interpretation errors. Therefore, this research aims to develop an artificial intelligence-based system using Convolutional Neural Networks (CNN) to automate heart sound classification. This system allows users to upload heart sound recordings, which will then be processed and classified as Normal or Abnormal. The research process consists of several main stages, including data collection and preprocessing of heart sounds, development and training of the CNN model, implementation of the model into a web application, and testing and evaluation of the system using metrics such as accuracy, precision, and recall. The outcome of this research includes a deep learning model for heart sound classification. The developed system is expected to enhance the accuracy and efficiency of heart disease detection, reduce reliance on manual analysis, and serve as an artificial intelligence-based solution that can be integrated into healthcare services.

Keywords

Artificial Intelligence CNN Deep Learning Early Detection Heart Sound

Article Details

How to Cite
nengsih, warnia, Elviyenti, M., Fadhli, M., Aleanda, G., & Utama, N. (2025). KLASIFIKASI SUARA JANTUNG MENGGUNAKAN DEEP LEARNING INTEGRASI AI DALAM APLIKASI WEB UNTUK DETEKSI DINI GANGGUAN KARDIOVASKULAR. Jurnal Komputer Terapan, 11(2), 53–59. https://doi.org/10.35143/jkt.v11i2.6516

References

  1. S. A. Latifi, H. Ghassemian, and M. Imani, “Classification of heart sounds using multi-branch deep convolutional network and LSTM-CNN,” arXiv preprint, arXiv:2407.10689, 2024.
  2. M. Madine, “Heart sound segmentation using deep learning techniques,” arXiv preprint, 2024.
  3. L. A. Dewi, “Klasifikasi machine learning untuk mendeteksi penyakit jantung,” Skripsi, UIN Syarif Hidayatullah Jakarta, 2023.
  4. S. Dwiyanti, A. H. Rasidi, A. M. Sitorus, and D. L. Lidapranata, “Identifikasi suara jantung normal dan abnormal menggunakan metode K-Nearest Neighbours,” Jurnal Elektronika dan Instrumentasi, vol. 1, no. 2, 2024.
  5. A. Soni, P. Singh, and S. Sharma, “Heart disease prediction using deep neural network,” in Proc. 2021 Int. Conf. Comput. Performance Eval. (ComPE), IEEE, 2021.
  6. L. Guo, S. Davenport, and Y. Peng, “Deep CardioSound – An ensembled deep learning framework for heart sound classification,” Computers in Biology and Medicine, vol. 148, p. 105880, 2022.
  7. M. T. Machaz, P. D. Kusuma, and A. Rizal, “Klasifikasi suara jantung normal dan abnormal menggunakan Short-Time Fourier Transform dan Convolutional Neural Network,” e-Proceeding of Engineering, vol. 9, no. 3, 2022.
  8. N. Tjindra, “Klasifikasi suara detak jantung menggunakan neural network,” Skripsi, Universitas Katolik Parahyangan, 2019.
  9. Y. Zhang and H. Liu, “Heart sound classification based on deep learning and data augmentation,” Biomedical Signal Processing and Control, vol. 73, p. 103438, 2022.
  10. M. Adnan and M. Lubis, “Sistem pendeteksi detak jantung berbasis CNN dan mobile interface,” in Proc. Seminar Nasional Teknologi dan Rekayasa (SNTR), vol. 6, no. 1, 2023.
  11. E. Rahmawati and T. Prasetyo, “Implementasi deep learning untuk klasifikasi suara detak jantung,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 7, no. 4, pp. 827–832, 2020.
  12. U. Mukherjee and S. Pancholi, “A visual domain transfer learning approach for heartbeat sound classification,” arXiv preprint, arXiv:2107.13237, 2021.
  13. T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,” ACM Transactions on Intelligent Systems and Technology, vol. 11, no. 1, pp. 1–22, 2020.
  14. M. Haris and E. R. Widasari, “Klasifikasi suara detak jantung menggunakan model LSTM dan GRU,” JPTIIK, vol. 4, no. 7, pp. 1209–1216, 2020.

Most read articles by the same author(s)

1 2 > >>