Main Article Content
Abstract
Keywords
Article Details
Copyright (c) 2025 Jurnal Komputer Terapan

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright info for authors
1. Authors hold the copyright in any process, procedure, or article described in the work and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors retain publishing rights to re-use all or portion of the work in different work but can not granting third-party requests for reprinting and republishing the work.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) as it can lead to productive exchanges, as well as earlier and greater citation of published work.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License 
References
- S. A. Latifi, H. Ghassemian, and M. Imani, “Classification of heart sounds using multi-branch deep convolutional network and LSTM-CNN,” arXiv preprint, arXiv:2407.10689, 2024.
- M. Madine, “Heart sound segmentation using deep learning techniques,” arXiv preprint, 2024.
- L. A. Dewi, “Klasifikasi machine learning untuk mendeteksi penyakit jantung,” Skripsi, UIN Syarif Hidayatullah Jakarta, 2023.
- S. Dwiyanti, A. H. Rasidi, A. M. Sitorus, and D. L. Lidapranata, “Identifikasi suara jantung normal dan abnormal menggunakan metode K-Nearest Neighbours,” Jurnal Elektronika dan Instrumentasi, vol. 1, no. 2, 2024.
- A. Soni, P. Singh, and S. Sharma, “Heart disease prediction using deep neural network,” in Proc. 2021 Int. Conf. Comput. Performance Eval. (ComPE), IEEE, 2021.
- L. Guo, S. Davenport, and Y. Peng, “Deep CardioSound – An ensembled deep learning framework for heart sound classification,” Computers in Biology and Medicine, vol. 148, p. 105880, 2022.
- M. T. Machaz, P. D. Kusuma, and A. Rizal, “Klasifikasi suara jantung normal dan abnormal menggunakan Short-Time Fourier Transform dan Convolutional Neural Network,” e-Proceeding of Engineering, vol. 9, no. 3, 2022.
- N. Tjindra, “Klasifikasi suara detak jantung menggunakan neural network,” Skripsi, Universitas Katolik Parahyangan, 2019.
- Y. Zhang and H. Liu, “Heart sound classification based on deep learning and data augmentation,” Biomedical Signal Processing and Control, vol. 73, p. 103438, 2022.
- M. Adnan and M. Lubis, “Sistem pendeteksi detak jantung berbasis CNN dan mobile interface,” in Proc. Seminar Nasional Teknologi dan Rekayasa (SNTR), vol. 6, no. 1, 2023.
- E. Rahmawati and T. Prasetyo, “Implementasi deep learning untuk klasifikasi suara detak jantung,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 7, no. 4, pp. 827–832, 2020.
- U. Mukherjee and S. Pancholi, “A visual domain transfer learning approach for heartbeat sound classification,” arXiv preprint, arXiv:2107.13237, 2021.
- T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,” ACM Transactions on Intelligent Systems and Technology, vol. 11, no. 1, pp. 1–22, 2020.
- M. Haris and E. R. Widasari, “Klasifikasi suara detak jantung menggunakan model LSTM dan GRU,” JPTIIK, vol. 4, no. 7, pp. 1209–1216, 2020.
References
S. A. Latifi, H. Ghassemian, and M. Imani, “Classification of heart sounds using multi-branch deep convolutional network and LSTM-CNN,” arXiv preprint, arXiv:2407.10689, 2024.
M. Madine, “Heart sound segmentation using deep learning techniques,” arXiv preprint, 2024.
L. A. Dewi, “Klasifikasi machine learning untuk mendeteksi penyakit jantung,” Skripsi, UIN Syarif Hidayatullah Jakarta, 2023.
S. Dwiyanti, A. H. Rasidi, A. M. Sitorus, and D. L. Lidapranata, “Identifikasi suara jantung normal dan abnormal menggunakan metode K-Nearest Neighbours,” Jurnal Elektronika dan Instrumentasi, vol. 1, no. 2, 2024.
A. Soni, P. Singh, and S. Sharma, “Heart disease prediction using deep neural network,” in Proc. 2021 Int. Conf. Comput. Performance Eval. (ComPE), IEEE, 2021.
L. Guo, S. Davenport, and Y. Peng, “Deep CardioSound – An ensembled deep learning framework for heart sound classification,” Computers in Biology and Medicine, vol. 148, p. 105880, 2022.
M. T. Machaz, P. D. Kusuma, and A. Rizal, “Klasifikasi suara jantung normal dan abnormal menggunakan Short-Time Fourier Transform dan Convolutional Neural Network,” e-Proceeding of Engineering, vol. 9, no. 3, 2022.
N. Tjindra, “Klasifikasi suara detak jantung menggunakan neural network,” Skripsi, Universitas Katolik Parahyangan, 2019.
Y. Zhang and H. Liu, “Heart sound classification based on deep learning and data augmentation,” Biomedical Signal Processing and Control, vol. 73, p. 103438, 2022.
M. Adnan and M. Lubis, “Sistem pendeteksi detak jantung berbasis CNN dan mobile interface,” in Proc. Seminar Nasional Teknologi dan Rekayasa (SNTR), vol. 6, no. 1, 2023.
E. Rahmawati and T. Prasetyo, “Implementasi deep learning untuk klasifikasi suara detak jantung,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 7, no. 4, pp. 827–832, 2020.
U. Mukherjee and S. Pancholi, “A visual domain transfer learning approach for heartbeat sound classification,” arXiv preprint, arXiv:2107.13237, 2021.
T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,” ACM Transactions on Intelligent Systems and Technology, vol. 11, no. 1, pp. 1–22, 2020.
M. Haris and E. R. Widasari, “Klasifikasi suara detak jantung menggunakan model LSTM dan GRU,” JPTIIK, vol. 4, no. 7, pp. 1209–1216, 2020.