Main Article Content
Abstract
Keywords
Article Details
Copyright (c) 2025 Jurnal Komputer Terapan

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright info for authors
1. Authors hold the copyright in any process, procedure, or article described in the work and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors retain publishing rights to re-use all or portion of the work in different work but can not granting third-party requests for reprinting and republishing the work.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) as it can lead to productive exchanges, as well as earlier and greater citation of published work.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License
References
- R. Setiamihardja, “Portofolio Assessment,” J. Pendidik. Dasar Kampus Cibiru, vol. 3, no. 2, pp. 1–2, 2012, [Online]. Available: https://ejournal.upi.edu/index.php/eduhumaniora/article/view/2806/1832
- N. Asmilia, “Pentingnya Portofolio Investasi untuk Mengetahui Keanekaragaman Resiko dan Meningkatkan Minat Berinvestasi di Kalangan Generasi Milenial,” J. Pengabdi. Kpd. Masyaraka, vol. 4, no. 3, 2023.
- M. M. Dewi, R. Andriani, and M. Nuraminudin, “Performance Analysis of the Item-Based Collaborative Filtering Model in Yogyakarta Tourism Recommendations,” vol. 9, no. 2, pp. 534–541, 2025.
- J. Aisyiah and L. Cahyani, “Sistem Rekomendasi Program Studi Menggunakan Metode Hybrid Recommendation (Studi Kasus: MAN Sumenep),” pp. 59–72, 2023, doi: 10.30864/eksplora.v12i1.992.
- D. S. Pradana, P. Prajoko, and G. P. Hartawan, “Perbandingan Algoritma Content-Based Filtering dan Collaborative Filtering dalam Rekomendasi Kegiatan Ekstrakurikuler Siswa,” Progresif J. Ilm. Komput., vol. 18, no. 2, p. 151, 2022, doi: 10.35889/progresif.v18i2.854.
- M. I. Rizky, I. Asror, and Y. R. Murti, “Sistem Rekomendasi Program Studi untuk Siswa SMA Sederajat Menggunakan Metode Hybrid Recommendation dengan Content Based Filtering dan Collaborative Filtering,” in e-Proceeding of Engineering, 2020, p. 17.
- L. Tommy, D. Novianto, and Y. S. Japriadi, “Sistem Rekomendasi Hybrid untuk Pemesanan Hidangan Berdasarkan Karakteristik dan Rating Hidangan,” J. Appl. Informatics Comput., vol. 4, no. 2, pp. 137–145, 2020, doi: 10.30871/jaic.v4i2.2687.
- A. Yusmar, Implementasi metode collaborative filtering dengan pendekatan Item-Based untuk rekomendasi rumah makan menggunakan algoritma adjusted cosine similarity. 2020. [Online]. Available: https://repository.uinjkt.ac.id/dspace/handle/123456789/55992%0Ahttps://repository.uinjkt.ac.id/dspace/bitstream/123456789/55992/1/ADDINI YUSMAR-FST.pdf
- A. A. Widjaja and H. N. Palit, “Hybrid Recommendation System untuk Peminjaman Buku Perpustakaan dengan Collaborative dan Content-Based Filtering,” J. Infra, vol. 10, no. 2, pp. 1–6, 2022, [Online]. Available: https://publication.petra.ac.id/index.php/teknik-informatika/article/view/12512
- M. Nurizki, W. Apriandari, and A. Asriyanik, “Algoritma Naïve Bayes untuk Rekomendasi Seleksi Peserta Paskibraka Berbasis Website,” J. Inf. Syst. Res., vol. 4, no. 4, pp. 1486–1493, 2023, doi: 10.47065/josh.v4i4.3574.
- Y. Dananjoyo and Y. Muflilah, “Sistem Rekomendasi Ukuran Baju Pada Aplikasi E-Commece Dengan Metode Naïve Bayes Yogo,” Jasmatika, vol. 3, no. 1, pp. 10–15, 2015.
- V. Srividhya and R. Anitha, “Evaluating Preprocessing Techniques in Text Categor ization,” pp. 49–51, 2010.
- L. Zhu and B. W. B, on Hybrid Recommendation Algorithms. Atlantis Press International BV. doi: 10.2991/978-94-6463-044-2.
- Z. Zhang, T. Peng, and K. Shen, “Overview of Collaborative Filtering Recommendation Algorithms,” IOP Conf. Ser. Earth Environ. Sci., vol. 440, no. 2, 2020, doi: 10.1088/1755-1315/440/2/022063.
- E. G. F. H. del Olmo, “Evaluation of recommender systems: A new approach,” Expert Syst. Appl., pp. 1–15, 2008.
- V. Nakhipova et al., “Use of the Naive Bayes Classifier Algorithm in Machine Learning for Student Performance Prediction,” Int. J. Inf. Educ. Technol., vol. 14, no. 1, pp. 92–98, 2024, doi: 10.18178/ijiet.2024.14.1.2028.
References
R. Setiamihardja, “Portofolio Assessment,” J. Pendidik. Dasar Kampus Cibiru, vol. 3, no. 2, pp. 1–2, 2012, [Online]. Available: https://ejournal.upi.edu/index.php/eduhumaniora/article/view/2806/1832
N. Asmilia, “Pentingnya Portofolio Investasi untuk Mengetahui Keanekaragaman Resiko dan Meningkatkan Minat Berinvestasi di Kalangan Generasi Milenial,” J. Pengabdi. Kpd. Masyaraka, vol. 4, no. 3, 2023.
M. M. Dewi, R. Andriani, and M. Nuraminudin, “Performance Analysis of the Item-Based Collaborative Filtering Model in Yogyakarta Tourism Recommendations,” vol. 9, no. 2, pp. 534–541, 2025.
J. Aisyiah and L. Cahyani, “Sistem Rekomendasi Program Studi Menggunakan Metode Hybrid Recommendation (Studi Kasus: MAN Sumenep),” pp. 59–72, 2023, doi: 10.30864/eksplora.v12i1.992.
D. S. Pradana, P. Prajoko, and G. P. Hartawan, “Perbandingan Algoritma Content-Based Filtering dan Collaborative Filtering dalam Rekomendasi Kegiatan Ekstrakurikuler Siswa,” Progresif J. Ilm. Komput., vol. 18, no. 2, p. 151, 2022, doi: 10.35889/progresif.v18i2.854.
M. I. Rizky, I. Asror, and Y. R. Murti, “Sistem Rekomendasi Program Studi untuk Siswa SMA Sederajat Menggunakan Metode Hybrid Recommendation dengan Content Based Filtering dan Collaborative Filtering,” in e-Proceeding of Engineering, 2020, p. 17.
L. Tommy, D. Novianto, and Y. S. Japriadi, “Sistem Rekomendasi Hybrid untuk Pemesanan Hidangan Berdasarkan Karakteristik dan Rating Hidangan,” J. Appl. Informatics Comput., vol. 4, no. 2, pp. 137–145, 2020, doi: 10.30871/jaic.v4i2.2687.
A. Yusmar, Implementasi metode collaborative filtering dengan pendekatan Item-Based untuk rekomendasi rumah makan menggunakan algoritma adjusted cosine similarity. 2020. [Online]. Available: https://repository.uinjkt.ac.id/dspace/handle/123456789/55992%0Ahttps://repository.uinjkt.ac.id/dspace/bitstream/123456789/55992/1/ADDINI YUSMAR-FST.pdf
A. A. Widjaja and H. N. Palit, “Hybrid Recommendation System untuk Peminjaman Buku Perpustakaan dengan Collaborative dan Content-Based Filtering,” J. Infra, vol. 10, no. 2, pp. 1–6, 2022, [Online]. Available: https://publication.petra.ac.id/index.php/teknik-informatika/article/view/12512
M. Nurizki, W. Apriandari, and A. Asriyanik, “Algoritma Naïve Bayes untuk Rekomendasi Seleksi Peserta Paskibraka Berbasis Website,” J. Inf. Syst. Res., vol. 4, no. 4, pp. 1486–1493, 2023, doi: 10.47065/josh.v4i4.3574.
Y. Dananjoyo and Y. Muflilah, “Sistem Rekomendasi Ukuran Baju Pada Aplikasi E-Commece Dengan Metode Naïve Bayes Yogo,” Jasmatika, vol. 3, no. 1, pp. 10–15, 2015.
V. Srividhya and R. Anitha, “Evaluating Preprocessing Techniques in Text Categor ization,” pp. 49–51, 2010.
L. Zhu and B. W. B, on Hybrid Recommendation Algorithms. Atlantis Press International BV. doi: 10.2991/978-94-6463-044-2.
Z. Zhang, T. Peng, and K. Shen, “Overview of Collaborative Filtering Recommendation Algorithms,” IOP Conf. Ser. Earth Environ. Sci., vol. 440, no. 2, 2020, doi: 10.1088/1755-1315/440/2/022063.
E. G. F. H. del Olmo, “Evaluation of recommender systems: A new approach,” Expert Syst. Appl., pp. 1–15, 2008.
V. Nakhipova et al., “Use of the Naive Bayes Classifier Algorithm in Machine Learning for Student Performance Prediction,” Int. J. Inf. Educ. Technol., vol. 14, no. 1, pp. 92–98, 2024, doi: 10.18178/ijiet.2024.14.1.2028.